Spark资源调度】的更多相关文章

本課主題 Master 资源调度的源码鉴赏 [引言部份:你希望读者看完这篇博客后有那些启发.学到什么样的知识点] 更新中...... 资源调度管理 任务调度与资源是通过 DAGScheduler.TaskScheduler.SchedulerBackend 等进行的作业调度 资源调度是指应用程序如何获得资源 任务调度是在资源调度的基础上进行的,没有资源调度那么任务调度就成为了无源之水无本之木 Master 资源调度的源码鉴赏 因為 Master 負責資源管理和調度,所以資源調度方法 schedu…
一.前述 Spark的资源调度是个很重要的模块,只要搞懂原理,才能具体明白Spark是怎么执行的,所以尤其重要. 自愿申请的话,本文分粗粒度和细粒度模式分别介绍. 二.具体 Spark资源调度流程图:          Spark资源调度和任务调度的流程: 1.启动集群后,Worker节点会向Master节点汇报资源情况,Master掌握了集群资源情况. 2.当Spark提交一个Application后,根据RDD之间的依赖关系将Application形成一个DAG有向无环图.任务提交后,Spa…
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk1.8 scala-2.10.4(依赖jdk1.8) spark-1.6 一.Spark资源调度和任务调度 1.Spark资源调度和任务调度的流程 启动集群后,Worker节点会向Master节点汇报资源情况,Master掌握了集群资源情况.当Spark提交一个Application后,根据RDD之间的依赖关系将Application形成一个DAG有向无环图.任…
Spark 资源调度与任务调度的流程(Standalone): 启动集群后, Worker 节点会向 Master 节点汇报资源情况, Master掌握了集群资源状况. 当 Spark 提交一个 Application 后, 根据 RDD 之间的依赖关系将 Application 形成一个 DAG 有向无环图. 任务提交后, Spark 会在任务端创建两个对象: DAGSchedular 和 TaskScheduler DAGSchedular 是任务调度的高层调度器, 是一个对象 DAGSch…
spark 资源调度包 Stage(阶段) 类解析 Stage 概念 Spark 任务会根据 RDD 之间的依赖关系, 形成一个DAG有向无环图, DAG会被提交给DAGScheduler, DAGSchedular 会把DAG划分为相互依赖的多个stage. 而划分stage的依据就是RDD之间的宽窄依赖. 每个stage包含一个或多个task任务.而这些task以taskSet的形式提交给TaskScheduler运行. stage是由一组并行的task组成的. stage计算模式 pipe…
一.资源调度&任务调度 1.启动集群后,Worker节点会周期性的[心跳]向Master节点汇报资源情况,Master掌握集群资源情况. 2.当Spark提交一个Application后,根据RDD之间的依赖关系将Application构建成一个DAG有向无环图. 3.任务提交后,Spark会在Driver端创建两个对象:DAGScheduler和TaskScheduler. 4.DAGScheduler是任务调度的高层调度器,是一个对象.DAGScheduler的主要作用就是将DAG根据RDD…
一:任务调度和资源调度的区别: 任务调度是指通过DAGScheduler,TaskScheduler,SchedulerBackend完成的job的调度 资源调度是指应用程序获取资源的调度,他是通过schedule方法完成的 二:资源调度解密 因为master负责资源管理和调度,所以资源调度的方法schedule位于master.scala这个了类中,当注册程序或者资源发生改变的都会导致schedule的调用,例如注册程序的时候(包括worker,driver和application的注册等,注…
本课主题 Master 资源调度的源码鉴赏 资源调度管理 任务调度与资源是通过 DAGScheduler.TaskScheduler.SchedulerBackend 等进行的作业调度 资源调度是指应用程序如何获得资源 任务调度是在资源调度的基础上进行的,没有资源调度那么任务调度就成为了无源之水无本之木 Master 资源调度的源码鉴赏 因为 Master 负责资源管理和调度,所以资源调度方法 scheduer 位于 Master.scala 这个类中,当注册程序或者资源发送改变的时候都会导致…
1.  资源分配 通过SparkSubmit进行提交应用后,首先会创建Client将应用程序(字节码文件.class)包装成Driver,并将其注册到Master.Master收到Client的注册请求后将其加入待调度队列waitingDrivers,并等待分配执行资源. 1.1 Dirver调度(分配Driver执行容器,1个) Master中调度程序执行时会为Driver分配一满足其执行要求的Worker, 并通知Worker启动将Driver.Worker接到执行Driver指令后创建Dr…
1.  资源分配 通过SparkSubmit进行提交应用后,首先会创建Client将应用程序(字节码文件.class)包装成Driver,并将其注册到Master.Master收到Client的注册请求后将其加入待调度队列waitingDrivers,并等待分配执行资源. 1.1 Dirver调度(分配Driver执行容器,1个) Master中调度程序执行时会为Driver分配一满足其执行要求的Worker, 并通知Worker启动将Driver.Worker接到执行Driver指令后创建Dr…