Twitter的分布式自增ID算法snowflake (Java版)   概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成. 而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这…
详解Twitter开源分布式自增ID算法snowflake,附演算验证过程 2017年01月22日 14:44:40 url: http://blog.csdn.net/li396864285/article/details/54668031 1.snowflake简介 互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同的特性,比如像并发巨大的业务要求ID生成效率高,吞吐大:比如某些银行类业…
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成. 而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务. 结构 snowflake的结构如下(每部分用…
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的.有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成.而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务. 该项目地址为:https://github.co…
snowflake 分布式场景下获取自增id git:https://github.com/twitter/snowflake 解读: http://www.cnblogs.com/relucent/p/4955340.html…
以JAVA为例 Twitter分布式自增ID算法snowflake,生成的是Long类型的id,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特(0和1). 那么一个Long类型的64个比特, twitter是这样分配的:正数位(占1比特)+时间戳(占41比特)+机械id(占5比特)+数据中心(占5比特)+自增值(占12比特),总共64比特组成的一个Long类型. 时间戳(占41个比特):毫秒数,大约可以使使用69年 机械id(占5个比特):即2的5次方等于32…
Twitter分布式自增ID算法snowflake,生成的是Long类型的id,一个Long类型占8个字节,每个字节占8比特,也就是说一个Long类型占64个比特(0和1). 那么一个Long类型的64个比特, twitter是这样分配的:正数位(占1比特)+时间戳(占41比特)+机械id(占5比特)+数据中心(占5比特)+自增值(占12比特),总共64比特组成的一个Long类型. 时间戳(占41个比特):毫秒数,大约可以使使用69年 机械id(占5个比特):即2的5次方等于32个机器 数据中心…
1.Snowflake简介 互联网快速发展的今天,分布式应用系统已经见怪不怪,在分布式系统中,我们需要各种各样的ID,既然是ID那么必然是要保证全局唯一,除此之外,不同当业务还需要不同的特性,比如像并发巨大的业务要求ID生成效率高,吞吐大:比如某些银行类业务,需要按每日日期制定交易流水号:又比如我们希望用户的ID是随机的,无序的,纯数字的,且位数长度是小于10位的.等等,不同的业务场景需要的ID特性各不一样,于是,衍生了各种ID生成器,但大多数利用数据库控制ID的生成,性能受数据库并发能力限制,…
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的.有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成.而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务. 该项目地址为:https://github.co…
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成. 而TWitter的snowflake解决了这种需求,最初TWitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,所以开发了这样一套全局唯一ID生成服务. 结构 snowflake的结构如下(每部分用…
一般情况,实现全局唯一ID,有三种方案,分别是通过中间件方式.UUID.雪花算法. 方案一,通过中间件方式,可以是把数据库或者redis缓存作为媒介,从中间件获取ID.这种呢,优点是可以体现全局的递增趋势(优点只能想到这个),缺点呢,倒是一大堆,比如,依赖中间件,假如中间件挂了,就不能提供服务了:依赖中间件的写入和事务,会影响效率:数据量大了的话,你还得考虑部署集群,考虑走代理.这样的话,感觉问题复杂化了 方案二,通过UUID的方式,java.util.UUID就提供了获取UUID的方法,使用U…
概述 本篇文章主要讲述分布式ID生成算法中最出名的Snowflake算法.搞.NET开发的,数据库主键最常见的就是int类型的自增主键和GUID类型的uniqueidentifier. 那么为何还要引入snowflake呢? INT自增主键 自增主键是解决主键生成的最简单方案,它有如下优势: 数据库本身负责主键生成,效率高 数据库本身保证主键顺序递增,方便存储和检索 相对应的,它也有如下缺点: 严重依赖数据库服务 强顺序递增,不易横向扩展 分库分表很难处理 不方便导入数据 上层应用在插入数据时,…
概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的. 有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成. 而snowflake解决了这种需求,开发这样一套全局唯一ID生成服务. 结构 snowflake的结构如下(每部分用-分开): 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 -…
分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的,作为索引非常不好,严重影响性能. snowflake的结构如下(每部分用-分开): 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 第一个部分,是 1 个 bit:0,这个是无意义的. 第二个部分是 41 个 bit:表…
概述 前一篇文章讲述了最流行的分布式ID生成算法snowflake,本篇文章根据美团点评分布式ID生成系统文章,介绍另一种相对更容易理解和编写的分布式ID生成方式. 实现原理 Leaf这个名字是来自德国哲学家.数学家莱布尼茨的一句话: There are no two identical leaves in the world "世界上没有两片相同的树叶" 设置数据表主键自增是最简单的方案,缺点也很明显: 强依赖数据库,无法提供高可用 ID生成强依赖单台服务,无法横向扩展 很容易想到,…
概述 上篇文章介绍了3种常见的Id生成算法,本篇主要介绍如何使用C#实现Snowflake. 基础字段 /// <summary> /// 工作节点Id(长度为5位) /// </summary> public long WorkId{get;protected set;} /// <summary> /// 机房Id(长度为5位) /// </summary> public long DataCenterId{get;protected set;} ///…
急景流年,铜壶滴漏,时光缱绻如画,岁月如诗如歌.转载一篇博客来慰藉,易逝的韶华. 使用UUID或者GUID产生的ID没有规则 Snowflake算法是Twitter的工程师为实现递增而不重复的ID实现的 概述 分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的.有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成.而twitter的snowflake解决了这种需…
简介 Twitter 早期用 MySQL 存储数据,随着用户的增长,单一的 MySQL 实例没法承受海量的数据,后来团队就研究如何产生完美的自增ID,以满足两个基本的要求: 每秒能生成几十万条 ID 用于标识不同的 记录: 这些 ID 应该可以有个大致的顺序,也就是说发布时间相近的两条记录,它们的 ID也应当相近,这样才能方便各种客户端对记录 进行排序. Twitter-Snowflake算法就是在这样的背景下产生的. 核心 Twitter 解决这两个问题的方案非常简单高效:每一个 ID 都是…
在我们的工作中,数据库某些表的字段会用到唯一的,趋势递增的订单编号,我们将介绍两种方法,一种是传统的采用随机数生成的方式,另外一种是采用当前比较流行的“分布式唯一ID生成算法-雪花算法”来实现. 一.时间戳随机数生成唯一ID 我们写一个for循环,用RandomUtil.generateOrderCode()生成1000个唯一ID,执行结果我们会发现出现重复的ID. /** * 随机数生成util **/ public class RandomUtil { private static fina…
这是网络流最基础的部分--求出源点到汇点的最大流(Max-Flow). 最大流的算法有比较多,本次介绍的是其中复杂度较高,但是比较好写的EK算法.(不涉及分层,纯粹靠BFS找汇点及回溯找最小流量得到最终的答案) EK算法,全名Edmonds-Karp算法(最短路径增广算法). 首先简单介绍一下网络流的基本术语: 源点:起点.所有流量皆从此点流出.只出不进. 汇点:终点.所有流量最后汇集于此.只进不出. 流量上限:有向边(u,v)(及弧)允许通过的最大流量. 增广路:一条合法的从源点流向汇点的路径…
今天阅读了一下大型网络技术架构这本苏中的分布式缓存一致性hash算法这一节,针对大型分布式系统来说,缓存在该系统中必不可少,分布式集群环境中,会出现添加缓存节点的需求,这样需要保障缓存服务器中对缓存的命中率,就有很大的要求了: 采用普通方法,将key值进行取hash后对分布式缓存机器数目进行取余,以集群3台分布式缓存为例子: 对于数据进行取hash值然后对3其进行取余,余数为0则进入node 0,余数位1则进入node1,余数位2则进入node2. 如果增加一个节点则对4进行取余,则会将node…
前言 Paxos 算法如同我们标题大图:世界上只有一种一致性算法,就是 Paxos.出自一位 google 大神之口. 同时,Paxos 也是出名的晦涩难懂,推理过程极其复杂.楼主在尝试理解 Paxos 算法的过程中历经挫折. 今天,楼主不会讲推理过程,因为就算是尝试使用大白话来讲,也非常的难懂.当然更不会讲数学公式. 而是从一个普通 Java 程序员的角度来理解 Paxos 算法. 1. 什么是 Paxos 算法 Paxos 算法由图灵奖获得者 Leslie Lamport 于 1990 年提…
一: Memcached 分布式之取模算法的缺陷(1)假设你有8台服务器,运行中突然down一台,则求余数的底数就7. 后果: key_0%8==0 ,key_0%7==0 =>hist(命中) .... .... key_6%8==6 ,key_6%7==6 =>hist(命中) key_9%8==1 ,key_9%7==2 =>miss(未命中) ... key_55%8==7 ,key_55%7==6 =>miss(未命中) 归纳: 有N台服务器,变成了N-1台. 每N*N-…
理解分布式一致性与Raft算法 永远绕不开的CAP定理 出于可用性及负载方面考虑,一个分布式系统中数据必然不会只存在于一台机器,一致性简单地说就是分布式系统中的各个部分保持数据一致 但让数据保持一致往往并不像看上去那么简单,假设我们有两台机器A与B,这时A更新了数据,A需要将更新的指令同步到B,如果A到B网络传输到B数据落地的总时间为500ms,那么这个500ms就是可能造成数据不一致的时间窗口,假如两台机器分属不同机房,甚至分属不同国家的机房,其时间窗口会更大,具体会造成什么影响呢? 举个栗子…
1 前言 前面写了4篇Redis底层实现和工程架构相关文章,感兴趣的读者可以回顾一下: Redis面试热点之底层实现篇-1 Redis面试热点之底层实现篇-2 Redis面试热点之工程架构篇-1 Redis面试热点之工程架构篇-2 今天开始来和大家一起学习一下Redis实际应用篇,会写几个Redis的常见应用. 在我看来Redis最为典型的应用就是作为分布式缓存系统,其他的一些应用本质上并不是杀手锏功能,是基于Redis支持的数据类型和分布式架构来实现的,属于小而美的应用. 结合笔者的日常工作,…
基于Java实现的适用于分布式ID的雪花算法工具类,这里存一下日后好找 /** * 雪花算法生成ID */ public class SnowFlakeUtil { private final static long START_STMP = 1543903501000L; private final static long SEQUENCE_BIT = 12; //序列号占用的位数 private final static long MACHINE_BIT = 5; //机器标识占用的位数 p…
1 前言 今天开始来和大家一起学习一下Redis实际应用篇,会写几个Redis的常见应用. 在我看来Redis最为典型的应用就是作为分布式缓存系统,其他的一些应用本质上并不是杀手锏功能,是基于Redis支持的数据类型和分布式架构来实现的,属于小而美的应用. 结合笔者的日常工作,今天和大家一起研究下基于Redis的分布式锁和Redlock算法的一些事情.     2.初识锁 1. 锁的双面性 现在我们写的程序基本上都有一定的并发性,要么单台多进线程.要么多台机器集群化,在仅读的场景下是不需要加锁的…
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_155 但凡说起分布式系统,我们肯定会对一些海量级的业务进行分拆,比如:用户表,订单表.因为数据量巨大一张表完全无法支撑,就会对其进行分库分表.但是一旦涉及到分库分表,就会引申出分布式系统中唯一主键ID的生成问题,当我们使用mysql的自增长主键(auto_increment)时,充分感受到了它的好处:整个系统ID唯一,ID是数字类型,而且是趋势递增的,ID简短,查询效率快,在分布式系统中显然由于单点问题无法使用mysql自增长…
概述 snowflake是Twitter开源的分布式ID生成算法,结果是一个Long型的ID.其核心思想是:使用41bit作为毫秒数,10bit作为机器的ID(5个bit是数据中心,5个bit的机器ID),12bit作为毫秒内的序列号(意味着每个节点在每毫秒可以产生 4096 个 ID),最后还有一个符号位,永远是0. 特点: 作为ID,肯定是唯一的: 自增,依赖时间戳生成,序列号有序递增: 支持非常大的业务ID生成,最大支持2^10=1024个业务节点,同一个节点一毫秒最多生成2^12=409…
目录 简介 产生背景 使用方式 原始版 完美版 测试 结尾 简介 IdHelper是一个.NET(支持.NET45+或.NET Standard2+)生成分布式趋势自增Id组件,有两个版本:原始版为基于雪花Id(不了解请自行百度)方案,需要手动管理设置WorkerId:完美版在原始版的基础上使用Zookeeper来解决原始版中的WorkerId的分配问题和时间回拨问题. 原始版安装方式:Nuget安装IdHelper即可 完美版安装方式:Nuget安装IdHelper.Zookeeper即可 请…