crop层】的更多相关文章

在Fully Convolutional Networks(FCN)中,会用到Crop 层,他的主要作用是进行裁切.下面我们举一个例子来说明如何使用Crop 层. Caffe中的数据是以 blobs形式存在的,blob是四维数据,即 (Batch size, number of Chennels, Height, Width)=(N, C, H, W).---(0,1,2,3) Crop层的输入(bottom blobs)有两个,让我们假设为A和B,输出(top)为C. A是要进行裁切的bott…
A是要进行剪裁的blob,B是参考,C是由A剪裁出来的输出. 模式1和模式2不同在于offset,模式1中每个dimension可以不同,模式2中用一个值表示了所有dimension的值. axis表示从哪一个轴开始剪裁,而不是只剪裁那一个轴 https://www.cnblogs.com/kunyuanjushi/p/5937083.html http://blog.csdn.net/u013989576/article/details/73294131…
Part1:caffe的ImageData层 ImageData是一个图像输入层,该层的好处是,直接输入原始图像信息就可以导入分析. 在案例中利用ImageData层进行数据转化,得到了一批数据. 但是笔者现在还有几个问题, 这个ImageData只能显示一个batch的图像信息,不能在同一案例循环使用的是吧? L.ImageData之后的数据,可以直接用于框架的输入数据吗?(待尝试) . 一.官方文档中的使用 在案例<Fine-tuning a Pretrained Network for S…
这里使用的数据集仍然是CIFAR-10,由于之前写过一篇使用AlexNet对CIFAR数据集进行分类的文章,已经详细介绍了这个数据集,当时我们是直接把这些图片的数据文件下载下来,然后使用pickle进行反序列化获取数据的,具体内容可以参考这里:第十六节,卷积神经网络之AlexNet网络实现(六) 与MNIST类似,TensorFlow中也有一个下载和导入CIFAR数据集的代码文件,不同的是,自从TensorFlow1.0之后,将里面的Models模块分离了出来,分离和导入CIFAR数据集的代码在…
最近实验当中借鉴了FPN网络,由于FPN网络对图片shape有要求,采用了两种方式,其一是在data_layer.cpp中,对原图进行padding操作:其二是需要对特征图进行类似crop操作,使得两者进行eltwise操作的时候shape是一致的. 简单说一下添加padding的操作,在data_layer.cpp的DataSetup()和load_batch()函数中添加: //cv_img是读入的原图像,ext_img是填充pad的图像 //extRows,extCols是填充的行和列,具…
在tensorflow中的卷积和池化层(一)和各种卷积类型Convolution这两篇博客中,主要讲解了卷积神经网络的核心层,同时也结合当下流行的Caffe和tf框架做了介绍,本篇博客将接着tensorflow中的卷积和池化层(一)的内容,继续介绍tf框架中卷积神经网络CNN的使用. 因此,接下来将介绍CNN的入门级教程cifar10\100项目.cifar10\100 数据集是由Alex Krizhevsky.Vinod Nair和Geoffrey Hinton收集的,这两个数据集都是从800…
版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Cheese_pop/article/details/52024980 DATA crop:截取原图像中一个固定patch layers { name: "data" type: DATA top: "data" top: "label" data_param { source: "../data/ImageNet/imagenet-train&…
如果说之前的Concat是将多个bottom合并成一个top的话,那么这篇博客的slice层则完全相反,是把一个bottom分解成多个top,这带来了一个问题,为什么要这么做呢?为什么要把一个低层的切分成多个高层的呢?自然有它的用途,大家想想,假如我们做的是多任务的问题,比如车牌检测.燃气表盘检测.验证码检测,这类OCR问题,之前做的一个项目就是一个多标签的学习,燃气表大家都知道,8位的表盘,每位都是数字(0~9),前面的环节不考虑小数点.采取的方法是定位+识别的方法,我们先用深度模型检测表盘的…
因为之前遇到了sequence learning问题(CRNN),里面涉及到一张图对应多个标签.Caffe源码本身是不支持多类标签数据的输入的. 如果之前习惯调用脚本create_imagenet.sh,将原始数据转换成lmdb数据格式,在这里就会遇到坑.我们去看convert_imageset源码,我们就会发现它是把最后一个空格前面的当作输入,最后一个空格之后的当作标签,那当然无法多标签啊. 通常解决办法 换框架,换一个能支持多标签分类问题的,例如mxnet,但我觉得你既然选择用Caffe来解…
分类任务 CNN对于常见的分类任务,基本是一个鲁棒且有效的方法.例如,做物体分类的话,入门级别的做法就是利用caffe提供的alexnet的模型,然后把输出的全连接层稍稍修改称为自己想要的类别数,然后再根据实际需要修改网络模型(通常是瘦身).下面记录几个point. 关于crop 一般在训练的时候会利用两个手段做data augmentation,分别是mirror和crop.其中,mirror没什么特别,但是crop有一些东西我们需要了解. 在训练的时候,crop操作会在大图上随机切小图,然后…