Mongodb亿级数据量的性能测试】的更多相关文章

进行了一下Mongodb亿级数据量的性能测试,分别测试如下几个项目:   (所有插入都是单线程进行,所有读取都是多线程进行) 1) 普通插入性能 (插入的数据每条大约在1KB左右) 2) 批量插入性能 (使用的是官方C#客户端的InsertBatch),这个测的是批量插入性能能有多少提高 3) 安全插入功能 (确保插入成功,使用的是SafeMode.True开关),这个测的是安全插入性能会差多少 4) 查询一个索引后的数字列,返回10条记录(也就是10KB)的性能,这个测的是索引查询的性能 5)…
工作需要使用 python 处理 mongodb 数据库两亿数据量去重复,需要在大数据量下快速判断数据是否存在 参考资料:https://segmentfault.com/q/1010000000613729 网上了解到 Bloom Filter ,Bloom filter 是由 Howard Bloom 在 1970 年提出的二进制向量数据结构,它具有很好的空间和时间效率,被用来检测一个元素是不是集合中的一个成员. 关于 Bloom Filter 的详细介绍请参考:百度百科 使用Python可…
数据平台已迭代三个版本,从一开始遇到很多常见的难题,到现在终于有片段时间整理一些已完善的文档,在此分享以供所需朋友的实现参考,但愿能帮助大家少走些弯路,在此篇幅中偏重于ElasticSearch的优化. 一.需求说明 项目背景: 在一业务系统中,部分表每天的数据量过亿,已按天分表,但业务上受限于按天查询,并且DB中只能保留3个月的数据(硬件高配),分库代价较高. 改进版本目标: 数据能跨月查询,并且支持1年以上的历史数据查询与导出: 按条件的数据查询秒级返回. 二.ElasticSearch检索…
刘 勇  Email:lyssym@sina.com 简介 针对实际应用中并发访问MySQL的场景,本文采用多线程对MySQL进行并发读取访问,其中以返回用户所需的数据并显示在终端为测试结束节点,即将数据从MySQL集群读取后存储于客户端本地内存中.测试过程如下:分别针对4种应用场景,从10.20.50.100个线程对MySQL展开测试.测试结果表明:对场景1)一般的并发访问能够满足需求:对于场景2)和3)响应时间在分钟级,分别处于1-3分钟和10分钟左右:对于场景4)则经常会抛出异常,并且以异…
财务平台进行分录分表以后,随着数据量的日渐递增,业务人员对账务数据的实时分析响应时间越来越长,体验性慢慢下降,之前我们基于mysql的性能优化做了一遍,可以说基于mysql该做的优化已经基本上都做了,本次是基于elasticsearch对其做进一步的性能优化 正文 1mysql索引原理 基于mysql最常用也最直接有效的性能优化也就是添加索引. mysql索引是怎么实现的呢?数据库最基本的查询算法是顺序查找,时间复杂度为O(n),显然在数据量很大的时候很低,优化的查询算法有二分查找,二叉树查找,…
前几天,一个用户研发QQ找我,如下: 自由的海豚. 16:12:01 岛主,我的一条SQL查不出来结果,能帮我看看不? 兰花岛主 16:12:10 多久不出结果? 自由的海豚 16:12:17 多久都没出结果,一直没看到结果过. 兰花岛主 16:12:26 呵呵,好. 兰花岛主 16:12:39 发下sql和执行计划. 自由的海豚 16:12:55 select n.c1, n.c2,n.c3,n.c4,n.c5  from (select  count(t.c1), t.c1, t.c2,t.…
前几天.一个用户研发QQ找我,例如以下: 自由的海豚. 16:12:01 岛主,我的一条SQL查不出来结果,能帮我看看不? 兰花岛主 16:12:10 多久不出结果? 自由的海豚 16:12:17 多久都没出结果,一直没看到结果过. 兰花岛主 16:12:26 呵呵.好. 兰花岛主 16:12:39 发下sql和运行计划. 自由的海豚 16:12:55 select n.c1, n.c2,n.c3,n.c4,n.c5   from (select  count(t.c1), t.c1, t.c2…
1.添加配置 apoc.export.file.enabled=true apoc.import.file.enabled=true dbms.directories.import=import dbms.security.allow_csv_import_from_file_urls=true 2.导出操作 CALL apoc.export.csv.all('C:\\Users\\11416\\.Neo4jDesktop\\neo4jDatabases\\database-bcbe66f8-2…
点亮 ️ Star · 照亮开源之路 GitHub:https://github.com/apache/dolphinscheduler 精彩回顾 近期,初灵科技的大数据开发工程师钟霈合在社区活动的线上 Meetup 上中,给大家分享了<基于 Apache DolphinScheduler 对千亿级数据的应用实践>主题演讲. 我们对于千亿级数据量的数据同步需求,进行分析和选型后,初灵科技最终决定使用DolphinScheduler进行任务调度,同时需要周期性调度 DataX.SparkSQL…
clickhouse 在数据分析技术领域早已声名远扬,如果还不知道可以 点这里 了解下. 最近由于项目需求使用到了 clickhouse 做分析数据库,于是用测试环境做了一个单表 6 亿数据量的性能测试,记录一下测试结果,有做超大数据量分析技术选型需求的朋友可以参考下. 服务器信息 CPU:Intel Xeon Gold 6240 @ 8x 2.594GHz 内存:32G 系统:CentOS 7.6 Linux内核版本:3.10.0 磁盘类型:机械硬盘 文件系统:ext4 Clickhouse信…