首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正
】的更多相关文章
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.1 考虑到导电媒质 (等离子体) 的运动对 Maxwell 方程组的修正
1. Maxwell 方程组 $$\bee\label{3_2_1_Maxwell} \bea \Div{\bf D}&=\rho_f,\\ \rot{\bf E}&=-\cfrac{\p {\bf B}}{\p t},\\ \Div{\bf B}&=0,\\ \rot{\bf H}&=\cfrac{\p {\bf D}}{\p t}+{\bf j}_f, \eea \eee$$ 其中 ${\bf D}=\ve {\bf E}$, ${\bf B}=\mu{\bf H}$…
[物理学与PDEs]第3章第4节 磁流体力学方程组的数学结构
1. 在流体存在粘性.热传导及 $\sigma\neq \infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组. 2. 在流体存在粘性.热传导但 $\sigma=\infty$ 时, 磁流体力学方程组是一个拟线性对称双曲 - 抛物耦合组. 3. 如果流体没有任何耗散过程, 此时称为理想磁流体, 而其方程称为理想磁流体力学方程组, 它是一个具有守恒律形式的一阶拟线性对称双曲组.…
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.4 不可压情形的磁流体力学方程组
不可压情形的磁流体力学方程组 $$\beex \bea \cfrac{\rd {\bf H}}{\rd t}-({\bf H}\cdot\n){\bf u}&=\cfrac{1}{\sigma\mu_0}\lap {\bf H},\\ \Div{\bf H}&=0,\\ \cfrac{\rd {\bf u}}{\rd t}+\n \sex{p+\cfrac{1}{2}\mu_0H^2} &=\mu_0({\bf H}\cdot\n){\bf H}+\bar \mu \lap{\bf…
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.3 磁流体力学方程组
1. 磁流体力学方程组 $$\beex \bea \cfrac{\p {\bf H}}{\p t} &-\rot({\bf u}\times{\bf H})=\cfrac{1}{\sigma\mu_0}\lap{\bf H},\\ \Div&{\bf H}=0,\\ \cfrac{\p \rho}{\p t}&+\Div(\rho {\bf u})=0,\\ \cfrac{\p (\rho{\bf u})}{\p t}&+\Div(\rho{\bf u}\times{\b…
[物理学与PDEs]第3章第2节 磁流体力学方程组 2.2 考虑到电磁场的存在对流体力学方程组的修正
1. 连续性方程 $$\bex \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})=0. \eex$$ 2. 动量守恒方程 $$\bex \cfrac{\p }{\p t}(\rho{\bf u}) +\Div(\rho {\bf u}\otimes{\bf u}-{\bf P}) -\mu\rot{\bf H}\times{\bf H}=\rho {\bf F}, \eex$$ 或 $$\bex \rho \cfrac{\rd {\bf u}}{\rd t}…
[物理学与PDEs]第5章第1节 引言
1. 弹性力学是研究弹性体在荷载的作用下, 其内力 (应力) 和变形所满足的规律的学科. 2. 荷载主要有两种, 一是作用在弹性体上的机械力 (本章讨论); 二是由温度等各种能导致弹性体变形的物理量 (下一章讨论). 3. 弹性体: 在荷载作用下产生弹性形变, 而撤去荷载后变形立即消失, 无题恢复原来的状态. 4. 本构关系: 物体的变形与应力之间的某种关系. 5. 弹性理论 $$\beex \bea\mbox{弹性理论}\sedd{\ba{ll} \mbox{线性弹性理论}\\ \m…
[物理学与PDEs]第4章第1节 引言
1. 本章讨论可燃流体在流动过程中同时伴随着燃烧现象的情况. 2. 燃烧有两种, 一种是爆燃 (deflagration): 火焰低速向前传播, 此时流体微元通常是未燃气体.已燃气体的混合物; 一种是爆炸 (detonation): 火焰以 $\geq 2000\ m/s$ 的速度向前传播, 此时, Chapman (1899) 与 Jouquet (1905) 认为化学反应过程是瞬时发生并完成的, 即有一波前 (wavefront) 进入未燃气体, 并瞬时地将它变成已燃气体. 3. 本章…
[物理学与PDEs]第5章第6节 弹性静力学方程组的定解问题
5. 6 弹性静力学方程组的定解问题 5. 6. 1 线性弹性静力学方程组 1. 线性弹性静力学方程组 $$\bee\label{5_6_1_le} -\sum_{j,k,l}a_{ijkl}\cfrac{\p ^2u_k}{\p x_j\p x_l}=\rho_0b_i,\quad i=1,2,3. \eee$$ 2. (Korn 不等式) 设 $\Omega\subset{\bf R}^3$ 为有界区域, 则 $$\bex \exists\ C_0>0,\st \int_\Omega…
[物理学与PDEs]第5章第5节 弹性动力学方程组及其数学结构
5.5.1 线性弹性动力学方程组 1. 线性弹性动力学方程组 $$\beex \bea 0&=\rho_0\cfrac{\p{\bf v}}{\p t}-\Div_x{\bf P}-\rho_0{\bf b}\\ &=\rho_0\cfrac{\p}{\p t}\sex{\cfrac{\p{\bf u}}{\p t}} -\Div_x({\bf A}{\bf E})-\rho_0{\bf b}\quad\sex{{\bf u}={\bf y}-{\bf x}}\\ &=\rh…
[物理学与PDEs]第5章第4节 本构方程 - 应力与变形之间的关系
5. 4 本构方程 - 应力与变形之间的关系 5.4.1. 本构关系的一般形式 1. 若 Cauchy 应力张量 ${\bf T}$ 满足 $$\bex {\bf T}({\bf y})=\hat{\bf T}({\bf x},{\bf F}({\bf x})), \eex$$ 则称材料是 (Cauchy) 弹性的; 这里 $\hat {\bf T}$ 称为响应函数. 若再 ${\bf T}({\bf y})=\hat{\bf T}({\bf F}({\bf x}))$, 则称弹性体是齐次的,…