首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
mapreduce map 的个数
】的更多相关文章
mapreduce map 的个数
在map阶段读取数据前,FileInputFormat会将输入文件分割成split.split的个数决定了map的个数.影响map个数(split个数)的主要因素有: 1) 文件的大小.当块(dfs.block.size)为128m时,如果输入文件为128m,会被划分为1个split:当块为256m,会被划分为2个split. 2) 文件的个数.FileInputFormat按照文件分割split,并且只会分割大文件,即那些大小超过HDFS块的大小的文件.如果HDFS中dfs.block.siz…
如何在hadoop中控制map的个数
hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其他的因素. 为了方便介绍,先来看几个名词: block_size : hdfs的文件块大小,默认为64M,可以通过参数dfs.block.size设置 total_size : 输入文件整体的大小 input_file_…
(转) 通过input分片的大小来设置map的个数
摘要 通过input分片的大小来设置map的个数 map inputsplit hadoop 前言:在具体执行Hadoop程序的时候,我们要根据不同的情况来设置Map的个数.除了设置固定的每个节点上可运行的最大map个数外,我们还需要控制真正执行Map操作的任务个数. 1.如何控制实际运行的map任务个数 我们知道,文件在上传到Hdfs文件系统的时候,被切分成不同的Block块(默认大小为64MB).但是每个Map处理的分块有时候并不是系统的物理Block块大小.实际处理的输入分块的大小是根据I…
3.控制hive map reduce个数
参考: https://blog.csdn.net/wuliusir/article/details/45010129 https://blog.csdn.net/zhong_han_jun/article/details/50814246 1.split的计算方式: splitsize = max(splitsize,min(blocksize,filesize/NUMmaps)) NUMmaps即为默认的map数,默认为1,也就是说最大的splitsize为文件的大小. 2.不同的hive.…
MapReduce文件切分个数计算方法
转自:http://www.crazyant.net/1423.html Hadoop的MapReduce计算的第一个阶段是InputFormat处理的,先将文件进行切分,然后将每个切分传递给每个Map任务来执行,本文阐述切分个数,也就是Map任务数目的计算方法: Hadoop首先会计算每个切分的大小,然后使用”文件总大小/每个切分的大小“来决定划分的总数,如果不足一个切分的大小,则当做1个: 在org.apache.hadoop.mapred.FileInputFormat中给出了计算每个划分…
如何在hadoop中控制map的个数 分类: A1_HADOOP 2015-03-13 20:53 86人阅读 评论(0) 收藏
hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map.tasks只是一个hadoop的参考数值,最终map的个数,还取决于其他的因素. 为了方便介绍,先来看几个名词: block_size : hdfs的文件块大小,默认为64M,可以通过参数dfs.block.size设置 total_size : 输入文件整体的大小 input_file_…
关于mapreduce.map.java.opts
a) Update the property in relevant mapred-site.xml(from where client load the config). b) Import the mapred-site.xml configuration file in the job startup command line using "-conf mapred-site.xml" For example: yarn jar hadoop-example.jar slee…
hadoop输入分片计算(Map Task个数的确定)
作业从JobClient端的submitJobInternal()方法提交作业的同时,调用InputFormat接口的getSplits()方法来创建split.默认是使用InputFormat的子类FileInputFormat来计算分片,而split的默认实现为FileSplit(其父接口为InputSplit).这里要注意,split只是逻辑上的概念,并不对文件做实际的切分.一个split记录了一个Map Task要处理的文件区间,所以分片要记录其对应的文件偏移量以及长度等.每个split…
MapReduce Map数 reduce数设置
JobConf.setNumMapTasks(n)是有意义的,结合block size会具体影响到map任务的个数,详见FileInputFormat.getSplits源码.假设没有设置mapred.min.split.size,缺省为1的情况下,针对每个文件会按照min (totalsize[所有文件总大小]/mapnum[jobconf设置的mapnum], blocksize)为大小来拆分,并不是说文件小于block size就不去拆分. 2.http://hadoop.hadoopor…
MapReduce: map读取文件的过程
我们的输入文件 hello0, 内容如下: xiaowang 28 shanghai@_@zhangsan 38 beijing@_@someone 100 unknown 逻辑上有3条记录, 它们以@_@分隔. 我们看看数据是如何被map读取的... 1. 默认配置 /* New API */ //conf.set("textinputformat.record.delimiter", "@_@"); /* job.setInputFormatClass(Form…