Hadoop Mapreduce中wordcount 过程解析】的更多相关文章

将文件split 文件1:                                                                   分割结果: hello  world                                                   <0, "hello world"> this is wordcount                                           <12,&quo…
摘要:在排序和reducer 阶段,reduce 侧连接过程会产生巨大的网络I/O 流量,在这个阶段,相同键的值被聚集在一起. 本文分享自华为云社区<MapReduce 示例:减少 Hadoop MapReduce 中的侧连接>,作者:Donglian Lin. 在这篇博客中,将使用 MapReduce 示例向您解释如何在 Hadoop MapReduce 中执行缩减侧连接.在这里,我假设您已经熟悉 MapReduce 框架并知道如何编写基本的 MapReduce 程序.本博客中讨论的主题如下…
目录: 目录见文章1 这个案列完成对单词的计数,重写map,与reduce方法,完成对mapreduce的理解. Mapreduce初析 Mapreduce是一个计算框架,既然是做计算的框架,那么表现形式就是有个输入(input),mapreduce操作这个输入(input),通过本身定义好的计算模型,得到一个输出(output),这个输出就是我们所需要的结果. 我们要学习的就是这个计算模型的运行规则.在运行一个mapreduce计算任务时候,任务过程被分为两个阶段:map阶段和reduce阶段…
mapreduce设计思想 概念:它是一个分布式并行计算的应用框架它提供相应简单的api模型,我们只需按照这些模型规则编写程序,即可实现"分布式并行计算"的功能. 案例一:wordcount经典案例 先写map方法 package com.gec.demo; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text…
地址 MapReduce 是现今一个非常流行的分布式计算框架,它被设计用于并行计算海量数据.第一个提出该技术框架的是Google 公司,而Google 的灵感则来自于函数式编程语言,如LISP,Scheme,ML 等. MapReduce 框架的核心步骤主要分两部分:Map 和Reduce.当你向MapReduce 框架提交一个计算作业时,它会首先把计算作业拆分成若干个Map 任务,然后分配到不同的节点上去执行,每一个Map 任务处理输入数据中的一部分,当Map 任务完成后,它会生成一些中间文件…
一.Maptask并行度与决定机制 1.一个job任务的map阶段的并行度默认是由该任务的大小决定的: 2.一个split切分分配一个maprask来并行处理: 3.默认情况下,split切分的大小等于blocksize大小: 4.切片不是mapper类中对单词的切片,而是对每一个处理文件的单独切片. eg.  默认情况下,一个maptask处理的文件大小为128M,比如一个400M的数据文件,就需要4个maptask并行来处理,而500M的数据文件也是需要4个maptask. 二.Maptas…
一.概述 理解Hadoop的Shuffle过程是一个大数据工程师必须的,笔者自己将学习笔记记录下来,以便以后方便复习查看. 二. MapReduce确保每个reducer的输入都是按键排序的.系统执行排序.将map输出作为输入传给reducer的过程称为Shuffle. 2.1 map端 map函数开始产生输出时,利用缓冲的方式写到内存并排序具体分一下几个步骤. 1.map数据分片:把输入数据源进行分片,根据分片来决定有多少个map,每个map任务都有一个环形内存缓冲区用于存储任务输出,默认情况…
Compression and Input Splits   当我们使用压缩数据作为MapReduce的输入时,需要确认数据的压缩格式是否支持切片?   假设HDFS中有一个未经压缩的大小为1GB的文本文件,如果HDFS Block大小为128MB,那么这个文件会被HDFS存储为8个Block.当MapReduce Job使用这个文件作为输入时将会创建8个切片(默认每一个Block生成一个切片),每一个切片关联的数据都可以被一个Map Task独立地处理.   如果这个文本文件使用Gzip格式压…
MapReduce 里面的shuffle:描述者数据从map task 输出到reduce task 输入的这段过程 Shuffle 过程: 首先,map 输出的<key,value > 会放在内存中,内存有一定的大小,超过之后,会将内存里的东西溢写(spill) 到磁盘(disk)中 .在从内存溢写到磁盘的过程中,会有两个操作:分区(parttition),排序(sort).map结束之后,磁盘中会有很多文件 . 有很多小文件,需要将文件进行文件的合并,并且排序.map 中的一些map任务可…
Partitioner的作用的对Mapper产生的中间结果进行分片,以便将同一分组的数据交给同一个Reduce处理,Partitioner直接影响Reduce阶段的负载均衡. MapReduce提供了两个Partitioner实现:HashPartitioner和TotalOederPartitioner. HashPartitioner是默认实现,实现了一种基于哈希值的分片方法,代码如下: public int getPartition(K2 key, V2 value, int numRed…