SVM问题汇总】的更多相关文章

1.为什么要选择最大间隔分类器,请从数学角度上说明? 答:几何间隔与样本的误分次数间存在关系: 其中的分母就是样本到分类间隔距离,分子中的R是所有样本中的最长向量值 2.样本失衡会对SVM的结果产生影响吗? 答:会,超平面会靠近样本少的类别.因为使用的是软间隔分类,而如果对所有类别都是使用同样的惩罚系数, 则由于优化目标里面有最小化惩罚量,所以靠近少数样本时,其惩罚量会少一些.  比如:假设理想的分隔超平面是大样本中有很多数据到该超平面的函数距离是小于1的, 而小样本中是只有少数样本的函数距离小…
%% [Input]:s_train(输入样本数据,行数为样本数,列为维数):s_group(训练样本类别):s_sample(待判别数据)%% [Output]:Cla(预测类别) function Cla = fun_panbie(s_train,s_group,s_sample,index )switch index case 1%Classify %[s_train,~]=mapminmax(s_train);%标准化处理 %[s_sample,~]=mapminmax(s_sample…
接触机器学习1年多了,由于只会用C#堆代码,所以只关注.NET平台的资源,一边积累,一边收集,一边学习,所以在本站第101篇博客到来之际,分享给大家.部分用过的 ,会有稍微详细点的说明,其他没用过的,也是我关注的,说不定以后会用上.机器学习并不等于大数据或者数据挖掘,还有有些区别,有些东西可以用来处理大数据的问题或者数据挖掘的问题,他们之间也是有部分想通的,所以这些组件不仅仅可以用于机器学习,也可以用于数据挖掘相关的. 按照功能把资源分为3个部分,开源综合与非综合类,以及其他网站博客等资料.都是…
  小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen…
汇总下常见的问题以及解释下一些比较容易让人萌的参数配置等等 问题汇总1.使用纯文本模式进行复制粘贴,打死不要用word!!!可以解决绝大多数问题,如果你依然执迷不悟,那么就好自为之吧 2.创建路由器时报错:路由XXXXX被创建,但是连接到外部网络失败.检查各个节点/var/lib/neutron/tmp目录权限是否是neutron的,如果不是,删除该目录,然后再次创建路由即可 3.ASCII报错.请看第一条 4.keystone/glance/nova/neutron验证时报500错误.请看第一…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
网上,书上有很多的关于SVM的资料,但是我觉得一些细节的地方并没有讲的太清楚,下面是我对SVM的整个数学原理的推导过程,其中我理解的地方力求每一步都是有理有据,希望和大家讨论分享. 首先说明,目前我的SVM的数学原理还没有过多的学习核函数,所以下面的整理都不涉及到核函数.而且因为很多地方我还没理解太透,所以目前我整理的部分主要分为: ①最大间隔分类器,其中包括优化目标的一步步推导,还有关于拉格朗日函数,KKT条件,以及对偶问题等数学优化的知识 ②软间隔优化形式,即加入了松弛变量的优化目标的一步步…
之前在数据挖掘课程上写了篇关于SVM的"科普文",尽量通俗地介绍了SVM的原理和对各公式的理解.最近给正在初学机器学习的小白室友看了一遍,他觉得"很好,看得很舒服",认为不发到blog上太可惜=  = 由于word转blog发布好麻烦,特别是图片什么的,所以我直接把文档转图片传上来好了(懒癌晚期) 里面的许多内容都是参考网上的大牛博客而来的(已列在参考资料中),自己进行了梳理和汇总,并对一些晦涩难懂的地方进行了更进一步的理解和说明,所以写得很长,但对于小白来说仔细读…
整理汇总,内容包括长期必备.入门教程.练手项目.学习视频. 一.长期必备. 1. StackOverflow,是疑难解答.bug排除必备网站,任何编程问题请第一时间到此网站查找. https://stackoverflow.com/ 2. github,是源码学习.版本控制不可缺少的网站,找源码学习请第一时间到此网站,fork之后自己维护. https://github.com/ 3. Awesome Python 最全的python资源,没有之一,绝对不容错过的python资源大全. http…
摘要:为方便朋友,重新整理汇总,内容包括长期必备.入门教程.练手项目.学习视频. 一.长期必备. 1. StackOverflow,是疑难解答.bug排除必备网站,任何编程问题请第一时间到此网站查找. https://stackoverflow.com/ 2. github,是源码学习.版本控制不可缺少的网站,找源码学习请第一时间到此网站,fork之后自己维护. https://github.com/ 3. Awesome Python 最全的python资源,没有之一,绝对不容错过的pytho…