Spark SQL Table Join(Python)】的更多相关文章

示例   Spark SQL注册“临时表”执行“Join”(Inner Join.Left Outer Join.Right Outer Join.Full Outer Join)   代码   from pyspark import SparkConf, SparkContext from pyspark.sql import SQLContext, Row conf = SparkConf().setAppName("spark_sql_table_join") sc = Spar…
原文地址:Spark SQL 之 Join 实现 Spark SQL 之 Join 实现 涂小刚 2017-07-19 217标签: spark , 数据库 Join作为SQL中一个重要语法特性,几乎所有稍微复杂一点的数据分析场景都离不开Join,如今Spark SQL(Dataset/DataFrame)已经成为Spark应用程序开发的主流,作为开发者,我们有必要了解Join在Spark中是如何组织运行的. SparkSQL总体流程介绍 在阐述Join实现之前,我们首先简单介绍SparkSQL…
/** Spark SQL源码分析系列文章*/ Spark SQL 可以将数据缓存到内存中,我们可以见到的通过调用cache table tableName即可将一张表缓存到内存中,来极大的提高查询效率. 这就涉及到内存中的数据的存储形式,我们知道基于关系型的数据可以存储为基于行存储结构 或 者基于列存储结构,或者基于行和列的混合存储,即Row Based Storage.Column Based Storage. PAX Storage. Spark SQL 的内存数据是如何组织的? Spar…
首先看个Not in Subquery的SQL: // test_partition1 和 test_partition2为Hive外部分区表 select * from test_partition1 t1 where t1.id not in (select id from test_partition2); 对应的完整的逻辑计划和物理计划为: == Parsed Logical Plan == 'Project [*] +- 'Filter NOT 't1.id IN (list#3 []…
查询优化是传统数据库中最为重要的一环,这项技术在传统数据库中已经很成熟.除了查询优化, Spark SQL 在存储上也进行了优化,从以下几点查看 Spark SQL 的一些优化策略. (1)内存列式存储与内存缓存表       Spark SQL 可以通过 cacheTable 将数据存储转换为列式存储,同时将数据加载到内存进行缓存. cacheTable 相当于在分布式集群的内存物化视图,将数据进行缓存,这样迭代的或者交互式的查询不用再从 HDFS 读数据,直接从内存读取数据大大减少了 I/O…
1 背  景 Spark SQL / Catalyst 和 CBO 的优化,从查询本身与目标数据的特点的角度尽可能保证了最终生成的执行计划的高效性.但是 执行计划一旦生成,便不可更改,即使执行过程中发现后续执行计划可以进一步优化,也只能按原计划执行: CBO 基于统计信息生成最优执行计划,需要提前生成统计信息,成本较大,且不适合数据更新频繁的场景: CBO 基于基础表的统计信息与操作对数据的影响推测中间结果的信息,只是估算,不够精确. 本文介绍的 Adaptive Execution 将可以根据…
针对hive on mapreduce 1:我们可以通过一些配置项来使Hive在执行结束后对结果文件进行合并: 参数详细内容可参考官网:https://cwiki.apache.org/confluence/display/Hive/Configuration+Properties hive.merge.mapfiles 在 map-only job后合并文件,默认true hive.merge.mapredfiles 在map-reduce job后合并文件,默认false hive.merg…
引言 join是SQL中的常用操作,良好的表结构能够将数据分散到不同的表中,使其符合某种规范(mysql三大范式),可以最大程度的减少数据冗余,更新容错等,而建立表和表之间关系的最佳方式就是join操作. 对于Spark来说有3种Join的实现,每种Join对应的不同的应用场景(SparkSQL自动决策使用哪种实现范式): 1.Broadcast Hash Join:适合一张很小的表和一张大表进行Join: 2.Shuffle Hash Join:适合一张小表(比上一个大一点)和一张大表进行Jo…
前言 众所周知,Catalyst Optimizer是Spark SQL的核心,它主要负责将SQL语句转换成最终的物理执行计划,在一定程度上决定了SQL执行的性能. Catalyst在由Optimized Logical Plan生成Physical Plan的过程中,会根据: abstract class SparkStrategies extends QueryPlanner[SparkPlan] 中的JoinSelection通过一些规则按照顺序进行模式匹配,从而确定join的最终执行策略…
周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark SQL相关的知识,如果对Spark不熟的同学可以先看看之前总结的两篇文章: [原]Learning Spark (Python版) 学习笔记(一)----RDD 基本概念与命令 [原]Learning Spark (Python版) 学习笔记(二)----键值对.数据读取与保存.共享特性 #####…