首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
PCA与特征选取
】的更多相关文章
PCA与特征选取
一.什么是PCA PCA,即PrincipalComponents Analysis,也就是主成份分析: 通俗的讲,就是寻找一系列的投影方向,高维数据按照这些方向投影后其方差最大化(方差最大的即是第一主成份,方差次大的为第二主成份... 如下图:数据点沿该方向投影后,方差最大,投影之后,由于各个点之间的距离之最大化的,因此彼此之间是最容易区分的 二.一些应用 1.数据降维 比如比较常见的人脸识别,假设有10副脸部图像,每副图像存贮为512*512大小的矩阵,经过特征提取后features可能为1…
特征选取1-from sklearn.feature_selection import SelectKBest
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 作者:知乎用户链接:https://www.zhihu.com/question/28641663/answer/41653367来源:知乎著作权归作者…
转 :scikit-learn的GBDT工具进行特征选取。
http://blog.csdn.net/w5310335/article/details/48972587 使用GBDT选取特征 2015-03-31 本文介绍如何使用scikit-learn的GBDT工具进行特征选取. 为什麽选取特征 有些特征意义不大,删除后不影响效果,甚至可能提升效果. 关于GBDT(Gradient Boosting Decision Tree) 可以参考: GBDT(MART)概念简介 GBDT(MART) 迭代决策树入门教程 | 简介 机器学习中的算法(1)-决策树…
scikit-learn的GBDT工具进行特征选取。
http://blog.csdn.net/w5310335/article/details/48972587 使用GBDT选取特征 2015-03-31 本文介绍如何使用scikit-learn的GBDT工具进行特征选取. 为什麽选取特征 有些特征意义不大,删除后不影响效果,甚至可能提升效果. 关于GBDT(Gradient Boosting Decision Tree) 可以参考: GBDT(MART)概念简介 GBDT(MART) 迭代决策树入门教程 | 简介 机器学习中的算法(1)-决策树…
[模式识别].(希腊)西奥多里蒂斯<第四版>笔记5之__特征选取
1,引言 有关模式识别的一个主要问题是维数灾难.我们将在第7章看到维数非常easy变得非常大. 减少维数的必要性有几方面的原因.计算复杂度是一个方面.还有一个有关分类器的泛化性能. 因此,本章的主要任务是:在尽可能保留特征的分类判别信息前提下,来选择重要的和维数少的特征量.这个过程被称作特征选择或者特征降维. 定量描写叙述来讲,选择的特征应该使得类内距离减小,类间距离增大. 一些文献表述中使用feature extraction,而不是我们本文使用的featureselection.这将会和第7…
吴裕雄 python 机器学习——数据预处理过滤式特征选取SelectPercentile模型
from sklearn.feature_selection import SelectPercentile,f_classif #数据预处理过滤式特征选取SelectPercentile模型 def test_SelectKBest(): X=[[1,2,3,4,5], [5,4,3,2,1], [3,3,3,3,3,], [1,1,1,1,1]] y=[0,1,0,1] print("before transform:",X) selector=SelectPercentile(s…
吴裕雄 python 机器学习——数据预处理过滤式特征选取VarianceThreshold模型
from sklearn.feature_selection import VarianceThreshold #数据预处理过滤式特征选取VarianceThreshold模型 def test_VarianceThreshold(): X=[[100,1,2,3], [100,4,5,6], [100,7,8,9], [101,11,12,13]] selector=VarianceThreshold(1) selector.fit(X) print("Variances is %s"…
吴裕雄 python 机器学习——数据预处理包裹式特征选取模型
from sklearn.svm import LinearSVC from sklearn.datasets import load_iris from sklearn.feature_selection import RFE,RFECV from sklearn.model_selection import train_test_split #数据预处理包裹式特征选取RFE模型 def test_RFE(): iris=load_iris() X=iris.data y=iris.targe…
特征选取方法PCA与LDA
一.主成分分析(PCA)介绍 什么是主成分分析? 主成分分析是一种用于连续属性降维的方法,把多指标转化为少数几个综合指标. 它构造了原始属性的一个正交变换,将一组可能相关的变量转化为一组不相关的变量,只需要少量变量就可以解释原始数据大部分信息. 主成分分析其实就是一个线性变换,这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推.主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最…
[译]使用scikit-learn进行机器学习(scikit-learn教程1)
原文地址:http://scikit-learn.org/stable/tutorial/basic/tutorial.html 翻译:Tacey Wong 概要: 该章节,我们将介绍贯穿scikit-learn使用中的"机器学习(Machine Learning)"这个词汇,并给出一些简单的学习示例. 前言 scikit-learn (Python机器学习库) 进行数据挖掘和数据分析的简单而高效的工具 任何人都可使用,可在多种场景/上下文复用 基于NumPy,SciPy和matplo…