python实现线性回归】的更多相关文章

(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測,如前面讲过的KNN.决策树.朴素贝叶斯.adaboost.SVM.Logistic回归都是分类算法.回归算法用于连续型分布预測.针对的是数值型的样本,使用回归.能够在给定输入的时候预測出一个数值.这是对分类方法的提升,由于这样能够预測连续型数据而不不过离散的类别标签. 回归的目的就是建立一个回归方程…
参考:<机器学习实战>- Machine Learning in Action 一. 必备的包 一般而言,这几个包是比较常见的: • matplotlib,用于绘图 • numpy,数组处理库 • pandas,强大的数据分析库 • sklearn,用于线性回归的库 • scipy, 提供很多有用的科学函数 我一般是用pip安装,若不熟悉这些库,可以搜索一下它们的简单教程. 二. 线性回归 为了尽量简单,所以用以下一元方程式为例子: 典型的例子是房价预测,假设我们有以下数据集: 我们需要通过训…
一. 先说我对这个题目的理解 直线的x,y方程是这样的:y = kx+b, k就是斜率. 求线性回归斜率, 就是说 有这么一组(x, y)的对应值——样本.如果有四组,就说样本量是4.根据这些样本,做“线性回归”,最终求出一条直线(即y = kx + b的k值和b值),使得样本里的各个点(x, y) “尽可能的”落到直线(或者直线附近)上. 二. python解题需要安装的包 实际解题主要用到的python库是pandas. 解题算法是“最小二乘法”,这用到了pandas的ols函数. 我的系统…
import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import train_test_split def load_data(): diabetes = datasets.load_diabetes() return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0…
构造符合线性回归的数据点 import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围 num_points = 1000 vectors_set = [] for i in range(num_points): x1 = np.random.normal(0.0, 0.55) y1 = x1 * 0.1 + 0.3 + np.random.no…
散点图和KNN预测 一丶案例引入 # 城市气候与海洋的关系研究 # 导包 import numpy as np import pandas as pd from pandas import Series,DataFrame import matplotlib.pyplot as plt %matplotlib inline # 使用画图模块时,jupyter工具需要声明 from pylab import mpl # mpl 提供画图的包 mpl.rcParams['font.sans-seri…
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 首先定义一个基本的回归类,作为各种回归方法的基类: class Regression(object): """ Base regression model. Models the relationship between a scalar dependent variable y and the independent variables X. Parameters…
LinearRegression(线性回归) 2019-02-20  20:25:47 1.线性回归简介 线性回归定义: 百科中解释 我个人的理解就是:线性回归算法就是一个使用线性函数作为模型框架($y = w*x + b$).并通过优化算法对训练数据进行训练.最终得出最优(全局最优解或局部最优)参数的过程. y:我们需要预测的数值: w:模型的参数(即我们需要通过训练调整的的值) x:已知的特征值 b:模型的偏移量 我们的目的是通过已知的x和y,通过训练找出合适的参数w和b来模拟x与y之间的关…
本文转载自:https://juejin.im/post/5a924df16fb9a0634514d6e1 机器学习之线性回归(纯python实现) 线性回归是机器学习中最基本的一个算法,大部分算法都是由基本的算法演变而来.本文着重用很简单的语言说一下线性回归. 线性回归 包括一元线性回归和多元线性回归,一元指的是只有一个x和一个y.通过一元对于线性回归有个基本的理解. 一元线性回归就是在数据中找到一条直线,以最小的误差来(Loss)来拟和数据. 上面提到的误差可以这样表示,假设那条直线如下图:…
线性回归原理介绍 线性回归python实现 线性回归sklearn实现 这里使用python实现线性回归,没有使用sklearn等机器学习框架,目的是帮助理解算法的原理. 写了三个例子,分别是单变量的.双变量的和多变量的.单变量和双变量的画出了图,多变量的由于高维空间难以实现,所以没有画图.单变量和双变量的使用的自己模拟的一个简单的房价数据集,多变量的使用的boston房价数据集. 1.单变量线性回归 代码 运行结果 2.双变量线性回归 代码 运行结果 3.多变量线性回归 代码 运行结果 如果需…