[BZOJ5505][GXOI/GZOI2019]逼死强迫症(矩阵快速幂) 题面 BZOJ 洛谷 题解 如果没有那两个\(1*1\)的东西,答案就是斐波那契数,可以简单的用\(dp\)得到. 大概是设\(f[i]\)表示当前除了到第\(i\)列的方案数,转移是考虑用\(2*1\)竖着覆盖一列还是\(2\)个\(1*2\)横着覆盖两列,得到转移\(f[i]=f[i-1]+f[i-2]\). 现在回假设要在这一行放上第二个\(1*1\),那么直到前一个\(1*1\)所在列之前的所有方块都被唯一确定了…
题目链接: [GXOI/GZOI2019]逼死强迫症 设$f[i][j]$表示前$i$列有$j$个$1*1$的格子的方案数,那么可以列出递推式子: $f[i][0]=f[i-1][0]+f[i-2][0]$ $f[i][1]=2*f[i-1][0]+f[i-1][1]$ $f]i][2]=f[i-1][2]+f[i-2][2]+f[i-2][1]$ 通过递推式子求出一个$6*6$的矩阵然后用矩阵乘法优化递推即可. #include<set> #include<map> #inclu…
题目地址:P5303 [GXOI/GZOI2019]逼死强迫症 这里是官方题解 初步分析 从题目和数据范围很容易看出来这是一个递推 + 矩阵快速幂,那么主要问题在于递推的过程. 满足条件的答案一定是以下的形式,设 \(k = n - 1\) ,左右两边为整齐的道路,中间为长度 \(p(p \geq 3)\) 的组合块: 由 \(p\) 的奇偶性,可以得到两种不同的基本图形,即 \(1 \times 1\) 的小块在同一行( \(p\) 是偶数)和各占一行( \(p\) 是奇数). 数学方法 左右…
[详●析][GXOI/GZOI2019]逼死强迫症 脑子不够用了... [题目大意] 在\(2\times N\)的方格中用\(N-1\)块\(2\times 1\)的方砖和\(2\)块\(1\times 1\)的方砖填充,且两块\(1\times 1\)的方块不能有相邻的边,求合法方案数. [分析] 啊,一道计数问题.反正我开始是这样想的. 如果没有那两块很碍事的砖,我们很容易想到这不就是斐波拉契递推吗?这个比较基础就不说了吧,直接\(f[i]=f[i-1]+f[i-2]\),递推走起. 好,…
可以先去考虑没有\(1 \times 1\)的砖块的情况,对于最后一个位置只有两种情况,一个是竖着用一块砖铺设\(2 \times 1\),另一个为横着用两块砖铺设\(2 \times 2\). 设没有\(1 \times 1\)的砖块的情况铺\(2 \times n\)的路的方案数为\(F_n\),根据上面的分析得\(F_n=F_{n-1}+F_{n-2}\),发现其为斐波那契数列. 用同样的方法考虑有\(1 \times 1\)的砖块的情况,设\(f_n\)表示按题意铺\(2 \times…
传送门 只有两行,考虑递推,设\(f_i\)为没有那两个\(1*1\)的,前\(i\)列的方案,可以发现一次可以放一个竖的或两个横的,也就是\(f_i=f_{i-1}+f_{i-2}\) 再设\(g_i\)表示有那两个\(1*1\)的,前\(i\)列的方案,首先和\(f\)类似,可以放一个竖的或两个横的\(1*2\),然后\(1*1\)可以放出长度为奇数,\(\ge3\)的两种矩形,或者长度为偶数,\(\ge4\)的两种矩形,所以\[g_i=g_{i-1}+g_{i-2}+(2\sum_{j=3…
题目 设我们最后的答案是\(g_n\) 我们发现在最后竖着放一个\(2\times 1\)的,和横着放两个\(1\times 2\)的就可以区分开之前的方案了 所以如果仅仅使用\(1\times 2\)的块来填满\(2\times n\)的格子,方案数就是\(fib_n\) 于是 \[g_n=g_{n-1}+g_{n-2}+2\sum_{i=3}fib_{n-i}\] 后面就是\(fib\)数列,就是把那两个\(1\times 1\)的在最后\(i\)列里强行区分开 于是我们矩乘就好了 代码 #…
题面 传送门 题解 先考虑全都放\(1\times 2\)的方块的方案,设防\(i\)列的方案数为\(g_i\),容易推出\(g_i=g_{i-1}+g_{i-2}\),边界条件为\(g_0=g_1=1\) 然后设\(f_i\)表示可以放\(1\times 1\)方块的方案.如果最右边一列不放\(1\times 1\),那么转移和之前一样,否则的话,另一个\(1\times 1\)必须放在\(1\)到\(i-2\)列,且根据奇偶性另一个方块放的位置是唯一的,而第一个方块左边全都是\(1\time…
题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Google Codejam Round 1A的C题. #include <bits/stdc++.h> typedef long long ll; const int N = 5; int a, b, n, mod; /* *矩阵快速幂处理线性递推关系f(n)=a1f(n-1)+a2f(n-2)+.…
非010串 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 如果一个01字符串满足不存在010这样的子串,那么称它为非010串. 求长度为n的非010串的个数.(对1e9+7取模)   Input 一个数n,表示长度.(n<1e15) Output 长度为n的非010串的个数.(对1e9+7取模) Input示例 3 Output示例 7 解释: 000 001 011 100 101 110 111 读完题,这样的题目肯定是能找到规律所在的,要不然数据太大根本无法算.假设现在…