hive: join 遇到问题】的更多相关文章

转自http://shiyanjun.cn/archives/588.html Hive是基于Hadoop平台的,它提供了类似SQL一样的查询语言HQL.有了Hive,如果使用过SQL语言,并且不理解Hadoop MapReduce运行原理,也就无法通过编程来实现MR,但是你仍然可以很容易地编写出特定查询分析的HQL语句,通过使用类似SQL的语法,将HQL查询语句提交Hive系统执行查询分析,最终Hive会帮你转换成底层Hadoop能够理解的MR Job. 对于最基本的HQL查询我们不再累述,这…
最近被朋友问到有关于Hive Join的问题,保守回答过后,来补充补充知识: Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能. 一.Hive支持哪些连接 来自官网的截图: 二.Hive五种连接 INNER JOIN:返回两张表中关联条件为"真"的记录: LEFT JOIN(LEFT OUTER JOIN):返回左表中所有的记录,加上右表中匹配的记录,如果条件不匹配,则返回NULL: RIGHT JOIN(RIGHT OUTER JO…
1.HIVE基本操作: [一起学Hive]之十一-Hive中Join的类型和用法 注:HIve不支持非等值连接: 什么是等值连接: //Oracle SQL 不等值连接 //通过不等值连接查找7788号员工可以去非本人出生地参加工作的地方. SELECT emp.empno,emp.ename,dept.loc FROM emp INNER JOIN dept ON emp.deptno <> dept.deptno WHERE empno=7788 ORDER BY EMPNO 结果:EMP…
在阐述Hive Join具体的优化方法之前,首先看一下Hive Join的几个重要特点,在实际使用时也可以利用下列特点做相应优化: 1. 只支持等值连接 2. 底层会将写的HQL语句转换为MapReduce,并且reduce会将join语句中除最后一个表外都缓存起来 3. 当三个或多个以上的表进行join操作时,如果每个on使用相同的字段连接时只会产生一个mapreduce 具体的优化建议: 1. 合理的设置map和reduce数量 jvm重用.可在hadoop的mapred-site.xml中…
Hive--join的使用 hive中常用的join有:inner join.left join .right join .full join.left semi join.cross join.mulitiple 在hive中建立两张表,用于测试: hive> select * from rdb_a; OK 1 lucy 2 jack 3 tony hive> select * from rdb_b; OK 1 12 2 22 4 32 一.基本join使用 1.内关联([inner] jo…
common join : 即reducer join,瓶颈在shuffle阶段,会产生较大的网络io: map join:即把小表放前面,扫描后放入每个节点的内存,在map阶段进行匹配: 开启map join: set hive.auto.convert.join = true; hive.mapjoin.smalltable.filesize 默认值是25mb 执行时任务信息: 当两个表都很大时,采用cluster sort join: 懒的敲了: 实现: 优点: 采用hint实现: exp…
在表连接时遇到一个问题: insert overwrite table BF_EVT_CRD_CRT_TRAD2 select BF_EVT_CRD_CRT_TRAD.*, jjkdjk.CUST_NO,BF_AGT_CRD_CRT.OUT_CRD_INSTN_CD from BF_AGT_CRD_CRT join jjkdjk on (BF_AGT_CRD_CRT.CUST_NO=jjkdjk.pcust_no) join BF_EVT_CRD_CRT_TRAD on (BF_EVT_CRD_…
作为数据分析中经常进行的join 操作,传统DBMS 数据库已经将各种算法优化到了极致,而对于hadoop 使用的mapreduce 所进行的join 操作,去年开始也是有各种不同的算法论文出现,讨论各种算法的适用场景和取舍条件,本文讨论hive 中出现的几种join 优化,然后讨论其他算法实现,希望能给使用hadoop 做数据分析的开发人员提供一点帮助. Facebook 今年在yahoo 的hadoop summit 大会上做了一个关于最近两个版本的hive 上所做的一些join 的优化,其…
原网址:https://blog.csdn.net/liyaohhh/article/details/50697519 hive在实际的应用过程中,大部份分情况都会涉及到不同的表格的连接, 例如在进行两个table的join的时候,利用MR的思想会消耗大量的内存,磁盘的IO,大幅度的影响性能,因为shuffle真的好令人担心啊,总之,就是各种问题都是由他产生的. 下面介绍一下涉及hive在join的时候的优化方式. 第一:在map端产生join         mapJoin的主要意思就是,当链…
1.小.大表 join 在小表和大表进行join时,将小表放在前边,效率会高.hive会将小表进行缓存. 2.mapjoin 使用mapjoin将小表放入内存,在map端和大表逐一匹配.从而省去reduce. 样例: select /*+MAPJOIN(b)*/ a.a1,a.a2,b.b2 from tablea a JOIN tableb b ON a.a1=b.b1 在0.7版本号后.也能够用配置来自己主动优化 set hive.auto.convert.join=true;…
大表x小表 这里可以利用mapjoin,SparkSQL中也有mapjoin或者使用广播变量能达到同样效果,此处描述HQL // 开启mapjoin并设定map表大小 set hive.auto.convert.join.noconditionaltask = true; set hive.auto.convert.; // 大表 join 小表 select * from big_table join small_table on big_table.id=small_table.id原理:将…
1. select * from a left join b on a.id = b.id and a.dt=20181115; 2. select * from a left join b on a.id = b.id and b.dt=20181115; 3. select * from a join b on a.id = b.id and a.dt=20181115; 4. select * from a left join b on a.id = b.id where a.dt=201…
1. 只支持相等JOIN. 2. 多表连接当使用不同的列进行JOIN时,会产生多个MR作业. 3. 最后的表的数据是从流中读取,而前面的会在内存中缓存,因此最好把最大的表放在最后. SELECT /*+ STREAMTABLE(a) */ a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)//暗示 4. JOIN在WHERE子句前进行处理. SELECT a.val, b.val FRO…
关键字:Hive Join.Hive LEFT|RIGTH|FULL OUTER JOIN.Hive LEFT SEMI JOIN.Hive Cross Join Hive中除了支持和传统数据库中一样的内关联.左关联.右关联.全关联,还支持LEFT SEMI JOIN和CROSS JOIN,但这两种JOIN类型也可以用前面的代替. 注意:Hive中Join的关联键必须在ON ()中指定,不能在Where中指定,否则就会先做笛卡尔积,再过滤. 数据准备: hive> desc lxw1234_a;…
本博文的主要内容如下: Hive文件存储格式 Hive 操作之表操作:创建外.内部表 Hive操作之表操作:表查询 Hive操作之表操作:数据加载 Hive操作之表操作:插入单表.插入多表 Hive语法结构:where 查询.all 和 distinct 选项.基于 Partition 的查询.基于 HAVING 的查询. LIMIT 限制查询. GROUP BY 分组查询. ORDER  BY 排序查询.SORT BY 查询.DISTRIBUTE BY 排序查询.CLUSTER BY 查询 H…
一.严格模式 通过设置以下参数开启严格模式: >set hive.mapred.mode=strict;[默认为nonstrict非严格模式] 查询限制: 1.对于分区表,必须添加where查询条件来对分区字段进行条件过滤. 2.order by语句必须包含limit输出限制. 3.限制执行笛卡尔积的查询. 二.Hive排序 1.order by:对于查询结果做全排序只允许有一个reduce处理,当数据量较大时,应慎用.严格模式下必须结合limit来使用. 2.sort by:对于单个reduc…
hive 的 join 类型有好几种,其实都是把 MR 中的几种方式都封装实现了,其中 join on.left semi join 算是里边具有代表性,且使用频率较高的 join 方式. 1.联系 他们都是 hive join 方式的一种,join on 属于 common join(shuffle join/reduce join),而 left semi join 则属于 map join(broadcast join)的一种变体,从名字可以看出他们的实现原理有差异. 2.区别 (1)Se…
“国际大学生节”又称“世界大学生节”.“世界学生日”.“国际学生日”.1946年,世界各国学生代表于布拉格召开全世界学生大会,宣布把每年的11月17日定为“世界大学生节”,以加强全世界大学生的团结和友谊. 注意,本文讨论的hive join优化器是从hive 0.11.0版本起添加的, 本文描述了Hive查询执行计划的优化,以提高join效率并减少对用户提示的需求. Hive自动识别各种用例并对其进行优化.Hive 0.11改进了这些情况的优化器: 决策支持系统或数据仓库的简单模型是星型模型,其…
完整PDF下载:<HIVE简明教程> 前言 Hive是对于数据仓库进行管理和分析的工具.但是不要被“数据仓库”这个词所吓倒,数据仓库是很复杂的东西,但是如果你会SQL,就会发现Hive是那么的简单,简单到甚至不用学就可以使用Hive做出业务需求所需要的东西. 但是Hive和SQL毕竟不同,执行原理.优化方法,底层架构都完全不相同. 大数据离线分析使用Hive已经成为主流,但是目前市面上Hive相关的中文书籍只有一本<Hive编程指南>,对于不懂技术的数据分析人员来说,这本书有些繁琐…
一.join优化 做join之前对数据进行预处理,减少参加join的数据量,把数据量少的表放入内存中,制作map端的join 应该将条目少的表/子查询放在 Join 操作符的左边.原因是在 Join 操作的 Reduce 阶段,位于 Join 操作符左边的表的内容会被加载进内存,将条目少的表放在左边,可以有效减少发生内存溢出错误的几率. Join查找操作中如果存在多个join,且所有参与join的表中其参与join的key都相同,则会将所有的join合并到一个mapred程序中. SELECT…
建表规则如下: CREATE [EXTERNAL] TABLE [IF NOT EXISTS] table_name [(col_name data_type [COMMENT col_comment], ...)] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)] [CLUSTERED BY (col_name, col_name, ...) [SORTED BY (…
1.概述 这个标题也是用血的教训换来的,希望对刚进入hive圈的童鞋和正在hive圈爬坑的童鞋有所帮助.打算分以下几个部分去描述: Hive的结构 Hive的基本操作 Hive Select Hive Join Hive UDF Hive的M/R 使用Hive注意点 优化及优化详情 优化总结 调优的经常手段 解决Hive问题的途径 这篇文章只是起个头,为描述其他部分做下准备.下面我赘述下Hive的结构和一些基本的操作. 2.介绍 Hive 是建立在 Hadoop 上的数据仓库基础构架.它提供了一…
http://www.aboutyun.com/thread-7548-1-1.html 这里面列出了hive几乎所有的配置项,下面问题只是说出了几种配置项目的作用.更多内容,可以查看内容问题导读:1.hive输出格式的配置项是哪个?2.hive被各种语言调用如何配置?3.hive提交作业是在hive中还是hadoop中?4.一个查询的最后一个map/reduce任务输出是否被压缩的标志,通过哪个配置项?5.当用户自定义了UDF或者SerDe,这些插件的jar都要放到这个目录下,通过那个配置项?…
1.概述 继续<那些年使用Hive踩过的坑>一文中的剩余部分,本篇博客赘述了在工作中总结Hive的常用优化手段和在工作中使用Hive出现的问题.下面开始本篇文章的优化介绍. 2.介绍 首先,我们来看看Hadoop的计算框架特性,在此特性下会衍生哪些问题? 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map reduce作业初始化的时间是比较长的. sum,count,max,mi…
Hive是什么? Hive是蜂房的意思,为什么hadoop上的这层数据仓库叫Hive? 因为生物学上蜂房是一个结构相当精良的建筑,取名Hive足见则个数据仓库在数据存储上也是堪称精良的.Hive是Facebook开发的构建于Hadoop集群之上的数据仓库应用,它提供了类似于SQL语法的HQL语句作为数据访问接口,这使得普通分析人员的应用Hadoop的学习曲线变缓. 第一:Hive是建立在 Hadoop 上的数据仓库基础构架. 第二:很低的学习代价便可以让用户在Hadoop中进行存储.查询和分析存…
一.join优化 Join查找操作的基本原则:应该将条目少的表/子查询放在 Join 操作符的左边.原因是在 Join 操作的 Reduce 阶段,位于 Join 操作符左边的表的内容会被加载进内存,将条目少的表放在左边,可以有效减少发生内存溢出错误的几率. Join查找操作中如果存在多个join,且所有参与join的表中其参与join的key都相同,则会将所有的join合并到一个mapred程序中. 案例: SELECT a.val, b.val, c.val FROM a JOIN b ON…
本文转载自:http://blog.csdn.net/haojun186/article/details/7977565 1.  HIVE结构 Hive 是建立在 Hadoop 上的数据仓库基础构架.它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储.查询和分析存储在 Hadoop 中的大规模数据的机制.Hive 定义了简单的类 SQL 查询语言,称为 QL,它允许熟悉 SQL 的用户查询数据.同时,这个语言也允许熟悉 MapReduce 开发者的开发自定义的 map…
要点:优化时,把hive sql当做map reduce程序来读,会有意想不到的惊喜. 理解hadoop的核心能力,是hive优化的根本. 长期观察hadoop处理数据的过程,有几个显著的特征: 1.不怕数据多,就怕数据倾斜. 2.对jobs数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次汇总,产生十几个jobs,没半小时是跑不完的.map reduce作业初始化的时间是比较长的. 3.对sum,count来说,不存在数据倾斜问题. 4.对count(distinct )…
hive中参数分为三类,第一种system环境变量信息,是系统环境变量信息:第二种是env环境变量信息,是当前用户环境变量信息:第三种是hive参数变量信息,是由hive-site.xml文件定义的以及当前hive会话定义的环境变量信息.其中第三种hive参数变量信息中又由hadoop hdfs参数(直接是hadoop的).mapreduce参数.metastore元数据存储参数.metastore连接参数以及hive运行参数构成. Hive-0.13.1-cdh5.3.6参数变量信息详解 参数…
1.   Hive基本概念 1.1  Hive简介 1.1.1 什么是Hive Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供类SQL查询功能. 1.1.2 为什么使用Hive 直接使用hadoop所面临的问题 人员学习成本太高 项目周期要求太短 MapReduce实现复杂查询逻辑开发难度太大 为什么要使用Hive 操作接口采用类SQL语法,提供快速开发的能力. 避免了去写MapReduce,减少开发人员的学习成本. 扩展功能很方便. 1.1.3…