http://blog.csdn.net/pipisorry/article/details/49445465 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Leskovec courses学习笔记 大规模机器学习之决策树Decision Trees {博客内容:Decision Trees.  This is one of the oldest forms of machine-learning, but there are issues that com…
决策树是强大的,多功能的机器学习算法. 6.1 训练和可视化一个决策树 在iris数据集训练DecisionTreeClassifier: from sklearn.datasets import load_iris from sklearn.tree import DecisionTreeClassifier iris = load_iris() X = iris.data[:, 2:] # petal length and width y = iris.target tree_clf = D…
简介 决策树是一个预测模型,通过坐标数据进行多次分割,找出分界线,绘制决策树. 在机器学习中,决策树学习算法就是根据数据,使用计算机算法自动找出决策边界. 每一次分割代表一次决策,多次决策而形成决策树,决策树可以通过核技巧把简单的线性决策面转换为非线性决策面. 基本思想 树是由节点和边两种元素组成的结构.有这几个关键词:根节点.父节点.子节点和叶子节点. 父节点和子节点是相对的,子节点由父节点根据某一规则分裂而来,然后子节点作为新的父亲节点继续分裂,直至不能分裂为止.而根节点是没有父节点的节点,…
第3章 决策树 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=default"></script> 决策树 概述 决策树(Decision Tree)算法主要用来处理分类问题,是最经常使用的数据挖掘算法之一. 决策树 场景 一个叫做 "二十个问题" 的游戏,游戏的规则很简单:参与游戏的一…
Decision Trees (DT)是用于分类和回归的非参数监督学习方法. 目标是创建一个模型,通过学习从数据特征推断出的简单决策规则来预测目标变量的值. 例如,在下面的例子中,决策树从数据中学习用一组if-then-else决策规则逼近正弦曲线. 树越深,决策规则越复杂,模型也越复杂. 决策树的优点: 易于理解和解释.树可以被可视化. 需要很少的数据准备.其他技术通常需要数据标准化,需要创建虚拟变量,并删除空白值.但请注意,该模块不支持缺少的值. 使用树(即,预测数据)的成本在用于训练树的数…
https://www.quora.com/Why-do-people-use-gradient-boosted-decision-trees-to-do-feature-transform Why is linearity/non-linearity important?Most of our classification models try to find a single line that separates the two sets of point. I say that they…
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share CatBoost Enables Fast Gradient Boosting on Decision Trees Using GPUs https://d…
一.Table for Content 在之前的文章中我们介绍了Decision Trees Agorithms,然而这个学习算法有一个很大的弊端,就是很容易出现Overfitting,为了解决此问题人们找到了一种方法,就是对Decision Trees 进行 Pruning(剪枝)操作. 为了提高Decision Tree Agorithm的正确率和避免overfitting,人们又尝试了对它进行集成,即使用多棵树决策,然后对于分类问题投票得出最终结果,而对于回归问题则计算平均结果.下面是几条…
This is the 2nd part of the series. Read the first part here: Logistic Regression Vs Decision Trees Vs SVM: Part I In this part we’ll discuss how to choose between Logistic Regression , Decision Trees and Support Vector Machines. The most correct ans…
Classification is one of the major problems that we solve while working on standard business problems across industries. In this article we’ll be discussing the major three of the many techniques used for the same, Logistic Regression, Decision Trees…