大意: 求重复$k$次的子串个数 枚举重复长度$i$, 把整个串分为$n/i$块, 如果每块可以$O(1)$计算, 那么最终复杂度就为$O(nlogn)$ 有个结论是: 以$j$开头的子串重复次数最大为$1+\lfloor\frac{lcp(j,j+i)}{i}\rfloor$ 先特判掉$k=1$的情况, 然后枚举每个块开头的位置, 计算出$lcp$的值$p$, 由于$k>1$, 合法位置的$lcp$值至少要跨越一个块, 可以得到 若$p\ge ki-1$, 那么这个块内所有点都合法 若$k(i…