从数据库中读取数据,具体操作为: # -*- coding: utf-8 -*- from numpy import * import numpy as np import pandas as pd from sqlalchemy import create_engine engine = create_engine('mysql+pymysql://root:123456@127.0.0.1:3306/db_websiterecommend?charset=utf8') sql = pd.re…
1. np.c[a, b]  将列表或者数据进行合并,我们也可以使用np.concatenate 参数说明:a和b表示输入的列表数据 2.np.linspace(0, 1, N) # 将0和1之间的数分成N份 参数说明:0表示起始数据,1表示末尾数据,N表示生成的分数 3.xx, yy = np.meshgrid(np.arange(x.min(), x.max(), N), np.arange(y.min(), y.max(), N))  对数据进行切分后,生成二维数据点 参数说明:np.ar…
1.Why use ggplot2 ggplot2是我见过最human friendly的画图软件,这得益于Leland Wilkinson在他的著作<The Grammar of Graphics>中提出了一套图形语法,把图形元素抽象成可以自由组合的成分,Hadley Wickham把这套想法在R中实现. 为什么要学习ggplot2,可以参考ggplot2: 数据分析与图形艺术的序言(btw: 在序言的最后,我被致谢了). Hadley Wickham也给出一堆理由让我们说服自己,我想再补充…
之前写过一个文章. 利用python画出SJF调度图 动态高度优先权优先调度 动态优先权调度算法,以就绪队列中各个进程的优先权作为进程调度的依据.各个进程的优先权在创建进程时所赋予,随着进程的推进或其等待时间的增加而改变.进程的优先权利用某一范围内的整数来表示.有的系统数值越小优先权越高,如Unix系统,有的系统则反之.采用该算法时,每次总是在就绪队列中选择一个优先权最高的进程进行调度,并将处理机分配给该进程.动态优先权调度算法又分为抢占式和非抢占式两种. 调度结果: img 调度数据 A 0 …
整体代码比较冗长,但是很好读.写的方法全是按照BUG分类去写的.所以写死了,凑合看吧,画出饼图,树状图和生成对应的数据excel,希望大家举一反三能帮助自己分析BUG #__author__ = 'xu.duan' # -*- coding: utf-8 -*- import cairo import pycha.pie import pycha.bar import pycha.scatter import pycha.stackedbar import pycha.line import t…
情人节到了,给大家来一朵高端的玫瑰花. 在网上看到的一个canvas实现的玫瑰花,效果很好,但是代码被压缩过,也没有注释,看的云里雾里的. 今天我教大脚用CSS来实现一朵玫瑰花. 先看效果 首先我们画出一个花瓣 1.画出一个长方形div,背景色设置成渐变色. 2.给四个角使用圆角,底部50%,顶部35% 然后使用css的3D属性 3D属性的详细请自行百度,这里不做详细介绍. 从Y轴方向上俯视玫瑰花,就是多个花瓣围绕圆心组成的同心圆. 如下图所示: 我们按照这个规则 1.越靠近中心层,花瓣数量越少…
1. sift = cv2.xfeatures2d.SIFT_create() 实例化 参数说明:sift为实例化的sift函数 2. kp = sift.detect(gray, None)  找出图像中的关键点 参数说明: kp表示生成的关键点,gray表示输入的灰度图, 3. ret = cv2.drawKeypoints(gray, kp, img) 在图中画出关键点 参数说明:gray表示输入图片, kp表示关键点,img表示输出的图片 4.kp, dst = sift.compute…
函数说明: 1.  .quantile(cut_list) 对DataFrame类型直接使用,用于求出给定列表中分数的数值,这里用来求出4分位出的数值 2.  plt.axvline()  # 用于画出图形中的竖线 3.  pd.qcut(feature, cut_list, labels)  用于对特征进行切分,cut_list切分的分数位置,labels切分后新的标签值 我们可以根据某个特征的四分位数值,给定这个特征一个新的四分位数值的特征 四分位表示的是数值的中位数,1/4位和3/4位 比…
在上一个博客中,我们构建了随机森林温度预测的基础模型,并且研究了特征重要性. 在这个博客中,我们将从两方面来研究数据对预测结果的影响 第一方面:特征不变,只增加样本的数据 第二方面:增加特征数,增加样本的数据 1.sns.pairplot 画出两个变量的关系图,用于研究变量之间的线性相关性,sns.pattle([color]) 用于设置调色板, 有点像scatter_matrix 2.MSE   round(abs(pred - test_y).mean(), 2)  研究预测值与真实值之差的…
# -*- coding: utf-8 -*- from pandas import read_csv import numpy as np from sklearn.datasets.base import Bunch import pickle # 导入cPickle包并且取一个别名pickle #持久化类 from sklearn.feature_extraction.text import TfidfVectorizer import jieba import operator # 排序…