Leetcode#172 Fractorial Trailing Zero】的更多相关文章

原题地址 n!含有多少个因子10,则结尾有多少个0 10=2*5,而2的个数肯定比5多,所以n!含有多少个因子5,则结尾有多少个0 如何计算n!有多少个因子5呢? 比如n=13,则: n! = 13 * 12 * 11 * * 9 * 8 * 7 * 6 * * 4 * 3 * 2 * 1 | |含有因子5: 10 5 实际上我们就是在找1到n里面能被5整除的数字有多少个. 显然每隔5个数就有一个带因子5的数字出现,所以就是n/5嘛,错!这样还是少算了一些数,比如25=5*5,丫可是包含2个5的…
Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explanation: 3! = 6, no trailing zero. Example 2: Input: 5 Output: 1 Explanation: 5! = 120, one trailing zero. Note: Your solution should be in logarithmic…
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 题目标签:Math 题目要求我们找到末尾0的数量. 只有当有10的存在,才会有0,比如 2 * 5 = 10; 4 * 5 = 20; 5 * 6 = 30; 5 * 8 = 40 等等,可以发现0 和 5 的联系. 所以这一题也是在问 n 里有多…
题目 Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 分析 Note中提示让用对数的时间复杂度求解,那么如果粗暴的算出N的阶乘然后看末尾0的个数是不可能的. 所以仔细分析,N! = 1 * 2 * 3 * ... * N 而末尾0的个数只与这些乘数中5和2的个数有关,因为每出现一对5和2就会产生…
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 主要是思考清楚计算过程: 将一个数进行因式分解,含有几个5就可以得出几个0(与偶数相乘). 代码很简单. public class Solution { public int trailingZeroes(int n) { int result =…
Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 解题思路: 计算n能达到的5的最大次幂,算出在这种情况下能提供的5的个数,然后减去之后递归即可,JAVA实现如下: static public int trailingZeroes(int n) { if(n<25) return n/5; lon…
题目描述: Given an integer n, return the number of trailing zeroes in n!. Note: Your solution should be in logarithmic time complexity. 解题思路: 对于阶乘而言,也就是1*2*3*...*n[n/k]代表1~n中能被k整除的个数那么很显然[n/2] > [n/5] (左边是逢2增1,右边是逢5增1)[n/2^2] > [n/5^2](左边是逢4增1,右边是逢25增1)…
Given an integer n, return the number of trailing zeroes in n!. Example 1: Input: 3 Output: 0 Explanation: 3! = 6, no trailing zero. Example 2: Input: 5 Output: 1 Explanation: 5! = 120, one trailing zero. Note: Your solution should be in logarithmic…
给定一个数n 求出n!的末尾0的个数. n!的末尾0产生的原因其实是n! = x * 10^m 如果能将n!是2和5相乘,那么只要统计n!约数5的个数. class Solution { public: int trailingZeroes(int n) { ; ,n/=); return ans; } };…
数字的末尾为0实际上就是乘以了10,20.30.40其实本质上都是10,只不过是10的倍数.10只能通过2*5来获得,但是2的个数众多,用作判断不准确. 以20的阶乘为例子,造成末尾为0的数字其实就是5.10.15.20. 多次循环的n,其实是使用了多个5的数字,比如25,125等等. n/5代表的是有多个少含5的数,所以不是count++,而是count += n/5 class Solution { public: int trailingZeroes(int n) { ; while(n)…