机器学习(二十七)— EM算法】的更多相关文章

EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等.本文对于EM算法,我们主要从以下三个方向学习: 1,最大似然 2,EM算法思想及其推导 3,GMM(高斯混合模型) 1,最大似然概率 我们经常会从样本观察数据中,找到样本的模型参数.最常用的方法就是极大化模型分布的对数似然函数.怎么理解呢?下面看我一一道来. 假设我们需要调查我们学习的男生和女生的身高分布.你…
最大期望算法(EM) K均值算法很easy(可參见之前公布的博文),相信读者都能够轻松地理解它. 但以下将要介绍的EM算法就要困难很多了.它与极大似然预计密切相关. 1 算法原理 最好还是从一个样例開始我们的讨论.如果如今有100个人的身高数据,并且这100条数据是随机抽取的. 一个常识性的看法是.男性身高满足一定的分布(比如正态分布),女性身高也满足一定的分布.但这两个分布的參数不同. 我们如今不仅不知道男女身高分布的參数,甚至不知道这100条数据哪些是来自男性.哪些是来自女性.这正符合聚类问…
注:本文中涉及到的公式一律省略(公式不好敲出来),若想了解公式的具体实现,请参考原著. 1.基本概念 (1)聚类的思想: 将数据集划分为若干个不想交的子集(称为一个簇cluster),每个簇潜在地对应于某一个概念.但是每个簇所具有现实意义由使用者自己决定,聚类算法仅仅会进行划分. (2)聚类的作用: 1)可以作为一个单独的过程,用于寻找数据的一个分布规律 2)作为分类的预处理过程.首先对分类数据进行聚类处理,然后在聚类结果的每一个簇上执行分类过程. (3)聚类的性能度量: 1)外部指标:该指标是…
极大似然估计 考虑一个高斯分布\(p(\mathbf{x}\mid{\theta})\),其中\(\theta=(\mu,\Sigma)\).样本集\(X=\{x_1,...,x_N\}\)中每个样本都是独立的从该高斯分布中抽取得到的,满足独立同分布假设. 因此,取到这个样本集的概率为: \[\begin{aligned} p(X\mid{\theta}) &= \prod_{i=1}^Np(x_i\mid\theta) \end{aligned}\] 我们要估计模型参数向量\(\theta\)…
不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmeans聚类(输入样本数据,输出样本数据的标注).实际上,高斯混和模型GMM和kmeans都是EM算法的应用. 在opencv3.0中,EM算法的函数是trainEM,函数原型为: bool trainEM(InputArray samples, OutputArray logLikelihoods=n…
简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系列样本,Logistic回归问题属于监督型学习问题,样本中含有训练的特征以及标签,在Logistic回归的参数求解中,通过构造样本属于类别和类别的概率: 这样便能得到Logistic回归的属于不同类别的概率函数: 此时,使用极大似然估计便能够估计出模型中的参数.但是,如果此时的标签是未知的,称为隐变…
EM算法浅析,我准备写一个系列的文章: EM算法浅析(一)-问题引出 EM算法浅析(二)-算法初探 一.EM算法简介 在EM算法之一--问题引出中我们介绍了硬币的问题,给出了模型的目标函数,提到了这种含隐变量的极大似然估计要用EM算法解决,继而罗列了EM算法的简单过程,当然最后看到EM算法时内心是懵圈的,我们也简要的分析了一下,希望你在看了前一篇文章后,能大概知道E步和M步的目的和作用.为了加深一下理解,我们回过头来,重新看下EM算法的简单介绍: 输入:观测变量数据Y,隐变量数据Z,联合分布$P…
从最大似然到EM算法浅解 zouxy09@qq.com http://blog.csdn.net/zouxy09 机器学习十大算法之中的一个:EM算法.能评得上十大之中的一个,让人听起来认为挺NB的.什么是NB啊,我们一般说某个人非常NB,是由于他能解决一些别人解决不了的问题.神为什么是神,由于神能做非常多人做不了的事.那么EM算法能解决什么问题呢?或者说EM算法是由于什么而来到这个世界上,还吸引了那么多世人的目光. 我希望自己能通俗地把它理解或者说明确,可是,EM这个问题感觉真的不太好用通俗的…
在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖于无法观测的隐藏变量(LatentVariable).最大期望经常用在机器学习和计算机视觉的数据聚类(DataClustering)领域.最大期望算法经过两个步骤交替进行计算,第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值:第二步是最大化(M),最大化在E步上求得的最大似然值来计算参数的值.M步上找到的参数估计值被用于下一个E步计算中…
最近看斯坦福大学的机器学习课程,空下来总结一下参数估计相关的算法知识. 一.极大似然估计: 大学概率论课程都有讲到参数估计的两种基本方法:极大似然估计.矩估计.两种方法都是利用样本信息尽量准确的去描述总体信息,或者说给定模型(参数全部或者部分未知)和数据集(样本),让我们去估计模型的未知参数. 其中,矩估计依赖于辛钦大数定律:简单随机样本的原点矩依概率收敛到相应的总体原点矩,这就启发我们利用样本矩替换总体矩(最简单的是用一阶样本原点矩估计总体期望,而用二阶样本中心矩估计总体方差),其一大优点就是…