压缩跟踪Compressive Tracking】的更多相关文章

好了,学习了解了稀疏感知的理论知识后,终于可以来学习<Real-Time Compressive Tracking>这个paper介绍的感知跟踪算法了.自己英文水平有限,理解难免出错,还望各位不吝指正. 下面是这个算法的工程网站:里面包含了上面这篇论文.Matlab和C++版本的代码,还有测试数据.demo等.后面我再学习学习里面的C++版本的代码,具体见博客更新. http://www4.comp.polyu.edu.hk/~cslzhang/CT/CT.htm 之前自己稍微学习了下稀疏感知…
这位博主总结的实在太好了,从原理到论文到代码,连论文都不用看:论文:http://blog.csdn.net/zouxy09/article/details/8118360 代码部分:http://blog.csdn.net/zouxy09/article/details/8210176 同时觉得搞科研实在太难了,看懂别人分析过的论文和代码已经十分艰难,想要自己做出这样的成果简直不敢想像.…
本文为原创,转载请注明出处:http://blog.csdn.net/autocyz/article/details/44490009 Fast Compressive Tracking (高速压缩跟踪) 尽管眼下有非常多种的跟踪算法,可是因为姿态的变化.光照的变化.障碍物等原因的存在.导致非常多算法的鲁棒性不好. 眼下比較主流的跟踪算法有两种.generative  tracking algorithms(生成跟踪算法)和discriminative algorithms(判别跟踪算法). 生…
这是Kaihua Zhang发表在ECCV2012的paper,文中提出了一种基于压缩感知(compressive sensing)的单目标跟踪算法,该算法利用满足压缩感知(compressive sensing)的RIP(restricted isometry property)条件的随机测量矩阵(random measurement matrix)对多尺度(multiple scale)的图像特征(features)进行降维,然后通过朴素贝叶斯分类器(naive Bayes classifi…
总体思想 1 利用符合压缩感知RIP条件的随机感知矩阵对多尺度图像进行降维 2 然后对降维的特征採用简单的朴素贝叶斯进行分类 算法主要流程 1 在t帧的时候,我们採样得到若干张目标(正样本)和背景(负样本)的图像片,然后对他们进行多尺度变换,再通过一个稀疏測量矩阵对多尺度图像特征进行降维,然后通过降维后的特征(包含目标和背景,属二分类问题)去训练朴素贝叶斯分类器(). 2 在t+1帧的时候,我们在上一帧跟踪到的目标位置的周围採样n个扫描窗体(避免去扫描整幅图像),通过相同的稀疏測量矩阵对其降维,…
<改进的集成平衡颜色和纹理特征的双模压缩跟踪> 摘要:将跟踪问题视为分析目标和背景信息的分类问题的判别跟踪方法可以实现最先进的性能.作为一个高性能判别器,压缩跟踪近来受到很多关注.然而,当物体遭受长时间遮挡,以及严重的外观和光照变化时,很容易导致跟踪失败.为解决这一问题,作者考虑平衡特征表示以及双模分类器的构造,开发了基于CT(compressed tracking)的鲁棒的跟踪框架.首先,CT的原始测量矩阵作为主导纹理特征提取器. 为了获得平衡的特征表示,通过考虑纹理和颜色特征来诱导补充测量…
原文:SQL Server审计功能入门:更改跟踪(Change Tracking) 介绍 更改跟踪是一种轻量型解决方案,它为应用程序提供了一种有效的更改跟踪机制.常规的,自定义变更跟踪和读取跟踪数据,会使用触发器,存储过程和记录变更的用户表等, 还需要保证访问一致和相关清理工作. 使用CT会减少额外工作量和保证访问一致性. 启用CT的表上必须得有主键,所有版本适用.为了保证更改信息的有效性,官方建议结合快照隔离使用. CT只能提供: 哪些行/列发生了更改 被更改行的最新数据. 不能提供:更改发生…
本章主要具体解释的是compressive tracking框架中的第一部分:样本的採集和扩充部分. 在開始代码学习的前面,你须要知道的理论知识參见论文:Real-time Compressive Tracking.理论理解能够參见我的博客:http://blog.csdn.net/ikerpeng/article/details/19826409 . 这个模块中你须要知道一个主要的概念:代码里面几个变量指的是什么.上一张图: 或许你如今还不知道他们是什么,直接贴代码了. 相信有我的凝视你一定会…
这是RTC算法的文献blog Real-time Compressive Tracking Kaihua Zhang1, Lei Zhang1, Ming-Hsuan Yang2 1Dept. of Computing, The Hong Kong Polytechnic University, Hong Kong 2Electrical Engineering and Computer Science, University of California at Merced, United St…
本人微信和易信公众号:微软动态CRM专家罗勇 ,回复274或者20180630可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyong.me . Dynamics 365与Office 365可以方便紧密的集成,在与Exchange集成的时候提供了文件夹级别的跟踪功能,如何配置有啥用?我们今天就来讲讲. 我这里先讲如何启用,需要系统管理员进行的设置很简单,使用浏览器登录Dynamics 365 Customer Engagement,导航…
compressive sensing(CS) 又称 compressived sensing ,compressived sample,大意是在采集信号的时候(模拟到数字),同时完成对信号压缩之意.中文的翻译成"压缩感知",意思变得至少不太好理解了. 数码相机镜头收集了大量的数据,然后再压缩,压缩时丢弃掉90%的数据.如果有CS,如果你的照相机收集了如此多的数据只是为了随后的删除,那么为什么不一开始就丢弃那90%的数据,直接去除冗余信息不仅可以节省电池电量,还能节省空间. 感知压缩难…
我是微软Dynamics 365 & Power Platform方面的工程师罗勇,也是2015年7月到2018年6月连续三年Dynamics CRM/Business Solutions方面的微软最有价值专家(Microsoft MVP),欢迎关注我的微信公众号 MSFTDynamics365erLuoYong ,回复349或者20190810可方便获取本文,同时可以在第一间得到我发布的最新博文信息,follow me! Dynamics 365 CRM 从2016版本起新增了一个新的消息叫R…
压缩感知是近年来极为热门的研究前沿,在若干应用领域中都引起瞩目.最近粗浅地看了这方面一些研究,对于Compressive Sensing有了初步理解,在此分享一些资料与精华.本文针对陶哲轩和Emmanuel Candes上次到北京的讲座中对压缩感知的讲解进行讲解,让大家能够对这个新兴领域有一个初步概念. compressive sensing(CS) 又称 compressived sensing ,compressived sample,大意是在采集信号的时候(模拟到数字),同时完成对信号压缩…
http://blog.csdn.net/zouxy09/article/category/1218765 图像卷积与滤波的一些知识点 图像卷积与滤波的一些知识点zouxy09@qq.comhttp://blog.csdn.net/zouxy09       之前在学习CNN的时候,有对卷积经常一些学习和整理,后来就烂尾了,现在稍微整理下,先放上来,以提醒和交流.一.线性滤波与卷积的基本概念      线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果.做法很…
一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 背景(Contexts) 主要区别与对比(Compare) 实现监控表数据步骤(Process) 参考文献(References) 二.背景(Contexts) 在SQL Server 2008以上版本中,对数据库中的用户表所做的 DML 更改(插入.更新和删除操作)除了:SQL Server 变更数据捕获(CDC)监控表数据之外,还有一个新增功能,那就是:更改跟踪(Chang Tracking),它跟CDC有什么不…
一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 背景(Contexts) 主要区别与对比(Compare) 实现监控表数据步骤(Process) 参考文献(References) 二.背景(Contexts) 在SQL Server 2008以上版本中,对数据库中的用户表所做的 DML 更改(插入.更新和删除操作)除了:SQL Server 变更数据捕获(CDC)监控表数据之外,还有一个新增功能,那就是:更改跟踪(Chang Tracking),它跟CDC有什么不…
基于在线学习的单目标跟踪算法调研 摘要 视觉跟踪在计算机视觉和机器人学领域是一个流行和有挑战的话题.由于多种场景下出现的目标外貌和复杂环境变量的改变,先进的跟踪框架就有必要采用在线学习的原理.本论文简要的介绍了一下关于视觉跟踪的挑战和应用,通过分类集中讨论基于在线学习的现代跟踪方法.我们提供了对每种分类中的代表性方法的详细描述,同时检查它们的优点和缺点.而且,一些最具代表性的算法被实现,来提供定量的参考.最后,我们列出了几个关于视觉跟踪研究的未来发展趋势. 1    引言 <未翻译> 2 生成…
原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我们国内Zhang Kaihua团队在ECCV 2014上发表的STC tracker:Fast Visual Tracking via Dense Spatio-Temporal Context Learning.相信做跟踪的人对他们团队应该是比较熟悉的了,如Compressive Tracking就是他们的杰作之一…
基于meanshift的手势跟踪与电脑鼠标控制(手势交互系统) zouxy09@qq.com http://blog.csdn.net/zouxy09 一年多前开始接触计算机视觉这个领域的时候,年幼无知,倍感吃力.当年惶恐,从而盲从.挣扎了不少时日,感觉自己好像还是处于领域的门外汉一样,在理论与实践的鸿沟中无法挣脱,心里空落落的.在这种挥之不去的烦忧中,某个时候豁然开朗,觉得要看一个系统的代码了,看看别人是怎么写的,理论又是怎么用在实践上的.然后自己就瞄准了TLD这个被炒作地很火的跟踪算法.花了…
源:TLD视觉跟踪算法 TLD算法好牛逼一个,这里有个视频,是作者展示算法的效果,http://www.56.com/u83/v_NTk3Mzc1NTI.html.下面这个csdn博客里有人做的相关总结,感觉挺好的,收藏了!下面有个Compressive Tracking的网址,提供的代码很少,但实时性很好,matlab代码下下来就能用. 以下博文转自:http://blog.csdn.net/windtalkersm/article/details/8018980 TLD是一种算法的简称,原作…
原文:http://blog.csdn.net/mysniper11/article/details/8726649 视频介绍网址:http://www.cvchina.info/2011/04/05/tracking-learning-detection/ TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek Kalal在其攻读博士学位期间提出的一种新的单目标长时间(long term tracking)跟踪算法.该算法与传统跟踪算法的显…
TLD算法好牛逼一个,这里有个视频,是作者展示算法的效果,http://www.56.com/u83/v_NTk3Mzc1NTI.html.下面这个csdn博客里有人做的相关总结,感觉挺好的,收藏了!下面有个Compressive Tracking的网址,提供的代码很少,但实时性很好,matlab代码下下来就能用. 以下博文转自:http://blog.csdn.net/windtalkersm/article/details/8018980 TLD是一种算法的简称,原作者把它叫做Trackin…
背景: 目前,在实时跟踪领域存在着越来越多的先进方法,同时也极大地促进了该领域的发展.主要有两种不同的基于深度学习的跟踪方法:1.由在线跟踪器组成,这些跟踪器依赖网络连续的微调来学习目标的变化外观,精度虽高,但无法满足实时要求:2.基于相关滤波器的跟踪器组成,利用原始深度卷积特征,如Imagenet中包含的一般对象,存在高维度的问题,另外,相关滤波器计算时间随着特征维度的增加而增加,也不满足实时要求. 在2018年的CVPR会议上,出现了这样一篇文章:<Context-aware Deep Fe…
From: 目标跟踪方法的发展概述 From: 目标跟踪领域进展报告 通用目标的跟踪 经典目标跟踪方法 2010 年以前,目标跟踪领域大部分采用一些经典的跟踪方法,比如 Meanshift.Particle Filter 和 Kalman Filter,以及基于特征点的光流算法等. Meanshift 方法是一种基于概率密度分布的跟踪方法,使目标的搜索一直沿着概率梯度上升的方向,迭代收敛到概率密度分布的局部峰值上.首先 Meanshift 会对目标进行建模,比如利用目标的颜色分布来描述目标,然后…
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepages(随意排序,不分先后): 1.USC Computer Vision Group:南加大,多目标跟踪/检测等: 2.ETHZ Computer Vision Laboratory:苏黎世联邦理工学院,欧洲最好的几个CV/ML研究机构: 3.Helmut Grabner:Online Boost…
注:文章内容都是摘录性文字,自己阅读的一些笔记,方便日后查看. MVC MVC(Model-View-Controller),M 是指业务模型,V 是指用户界面,C 则是控制器,使用 MVC 的目的是将 M 和 V 的实现代码分离,从而使同一个程序可以使用不同的表现形式. 交互方式(所有通信都是单向的): View 传送指令到 Controller Controller 完成业务逻辑后,要求 Model 改变状态 Model 将新的数据发送到 View,用户得到反馈 更详细的说明: 模型(Mod…
生成模型(Generative)和判别模型(Discriminative) 引言    最近看文章<A survey of appearance models in visual object tracking>(XiLi,ACMTIST,2013),在文章的第4节第1段有这样的描述,“Recently,visualobject tracking has been posed as a tracking-by-detectionproblem, where statistical modeli…
http://www.cnblogs.com/hanhuili/p/4281077.html Correlation Filter in Visual Tracking系列二:Fast Visual Tracking via Dense Spatio-Temporal Context Learning 论文笔记   原文再续,书接一上回.话说上一次我们讲到了Correlation Filter类 tracker的老祖宗MOSSE,那么接下来就让我们看看如何对其进一步地优化改良.这次要谈的论文是我…
写在前面 由于JS开发对我来说是全新的技术栈,开发过程中遇到了各种各样的框架.工具,同时也感叹一下相对于.Net的框架(工具框架以及测试框架等)JS框架真的是太丰富了.社区的力量果然强大---也是由此希望本文能概括常用的框架以及一些基本理念,不断完善中,希望各位有经验的朋友能多多提意见. 0. 前端框架 Ember.js Ember.js是一套javascript的框架,Ember是一个雄心勃勃的Web应用程序,消除了样板,并提供了一个标准的应用程序架构的JavaScript框架. 更多请参考<…