python DataFrame索引选项】的更多相关文章

obj[val]-----------选取DataFrame的单个列或一组列,在一些情况下会比较便利:布尔型数组(过滤行).切片(行切片).布尔型DataFrame obj.ix[val]---------------选取DataFrame的单个行或一组行 obj.ix[:,val]----------------选取单个列或列的子集 obj.ix[val1,val2]------------同时选择行和列 reindex方法-----------------将一个或多个轴匹配到新索引 xs--…
array,list,dataframe索引切片操作 2016年07月19日——智浪文档 list,一维,二维array,datafrme,loc.iloc.ix的简单探讨 Numpy数组的索引和切片介绍: 从最基础的list索引开始讲起,我们先上一段代码和结果: a = [0,1,2,3,4,5,6,7,8,9] a[:5:-1] #step < 0,所以start = 9 a[0:5:-1] #指定了start = 0 a[1::-1] #step < 0,所以stop = 0 输出: […
怎样解决python dataframe loc,iloc循环处理速度很慢的问题 1.问题说明 最近用DataFrame做大数据 处理,发现处理速度特别慢,追究原因,发现是循环处理时,loc,iloc速度都特别慢,当数据量特别大得时候真的是超级慢.查很多资料,发现没有详细说明,以下为解决办法 2.问题解决 使用 Pandas.Series.apply 方法,可以对一列数据快速进行处理 Series.apply(*func*, *convert_dtype=True*, *args=()*, **…
Field.Store.YES或者NO(存储域选项) 设置为YES表示或把这个域中的内容完全存储到文件中,方便进行文本的还原 设置为NO表示把这个域的内容不存储到文件中,但是可以被索引,此时内容无法完全还原(doc.get) Field.Index(索引选项) Index.ANALYZED:进行分词和索引,适用于标题.内容等 Index.NOT_ANALYZED:进行索引,但是不进行分词,如果身份证号.姓名.ID等,适用于精确搜索 Index.ANALYZED_NOT_NORMS:进行分词但是不…
[Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子 sqlContext = HiveContext(sc) peopleDF = sqlContext.read.json("people.json") peopleRDD = peopleDF.map(lambda row: (row.pcode,row.name)) peopleRDD.take(5) Out[5]: [(u'94304', u'Alice'),(u'94304', u'…
[Spark][Python][DataFrame][RDD]从DataFrame得到RDD的例子 $ hdfs dfs -cat people.json {"name":"Alice","pcode":"94304"}{"name":"Brayden","age":30,"pcode":"94304"}{"name&…
[Spark][Python][DataFrame][Write]DataFrame写入的例子 $ hdfs dfs -cat people.json {"name":"Alice","pcode":"94304"}{"name":"Brayden","age":30,"pcode":"94304"}{"name&qu…
[Spark][Python][DataFrame][SQL]Spark对DataFrame直接执行SQL处理的例子 $cat people.json {"name":"Alice","pcode":"94304"}{"name":"Brayden","age":30,"pcode":"94304"}{"name&qu…
[Spark][Python]DataFrame的左右连接例子 $ hdfs dfs -cat people.json {"name":"Alice","pcode":"94304"}{"name":"Brayden","age":30,"pcode":"94304"}{"name":"Carla&…
[Spark][Python]DataFrame中取出有限个记录的例子 的 继续 [15]: myDF=peopleDF.where("age>21") In [16]: myDF.limit(2).show() +---+-------+-----+----+|age| name|pcode|pcoe|+---+-------+-----+----+| 30|Brayden|94304|null|| 46| Diana| null|null|+---+-------+-----…