fcn】的更多相关文章

参考文章: http://blog.csdn.net/u013059662/article/details/52770198 caffe的安装配置,以及fcn的使用在我前边的文章当中都已经提及到了,这边不会再细讲.在下边的内容当中,我们来看看如何使用别人提供的数据集来训练自己的模型!在这篇文章之后,我计划还要再写如何fine-tune和制作自己的数据集,以及用自己的数据集fine-tune. (一)数据准备(以SIFT-Flow 数据集为例) 下载数据集:  http://pan.baidu.c…
论文:<Fully Convolutional Networks for Semantic Segmentation> 代码:FCN的Caffe 实现 数据集:PascalVOC 一 数据集制作 PascalVOC数据下载下来后,制作用以图像分割的图像数据集和标签数据集,LMDB或者LEVELDB格式. 最好resize一下(填充的方式). 1. 数据文件夹构成 包括原始图片和标签图片,如下.   然后,构建对应的lmdb文件.可以将所有图片按照4:1的比例分为train:val的比例.每个t…
NaN 计算softmax loss时要用numeric robust 的计算方式. softmax与 loss可能要分开计算. 得到前者的计算方式可以是常规方法. 但计算后者时要注意无穷大和NaN的出现. NaN的出现一定是因为出现了无穷大. 无穷大的出现则是因为变量存储的数值超出了变量数据类型能表示的最大值.使用GPU计算常用float32, 它的最大表示值在\(10^{38.5}\)附近. learning_rate太大可能导致非数的出现: weight值会变得很大(超过10应该就算大了)…
图像语义分割的意思就是机器自动分割并识别出图像中的内容,我的理解是抠图- 之前在Faster R-CNN中借用了RPN(region proposal network)选择候选框,但是仅仅是候选框,那么我想提取候选框里面的内容,就是图像语义分割了. 简单的理解就是,图像的"分词技术". 参考文献: 1.知乎,困兽,关于图像语义分割的总结和感悟 2.微信公众号,沈MM的小喇叭,十分钟看懂图像语义分割技术 . . 一.FCN全卷积:Fully Convolutional Networks…
图像语义分割,简单而言就是给定一张图片,对图片上的每一个像素点分类. 图像语义分割,从FCN把深度学习引入这个任务,一个通用的框架事:前端使用FCN全卷积网络输出粗糙的label map,后端使用CRF条件随机场/MRF马尔科夫随机场等优化前端的输出,最后得到一个精细的分割图. 前端 为什么需要FCN? 分类网络通常会在最后连接几层全连接层,它会将原来二维的矩阵(图片)压缩成一维的,从而丢失了空间信息,最后训练输出一个标量,这就是我们的分类标签. 而图像语义分割的输出需要是个分割图,且不论尺寸大…
先说一下前期准备工作:自己的运行环境是Ubuntu16.04+caffe+CPU(这台电脑没有GPU)+python 关于python的搭建就不说了,网上随便一搜,很多参考资源.说一下我配置好caffe之后,编译python接口时遇到的问题,以及我用到的解决办法. 比较顺利地配置好caffe只后,到了make pycaffe的时候,提示如下错误: 后来执行:~/caffe$ locate pyconfig.h 找到头文件pyconfig.h 下面是一步至关重要的操作:~/caffe$export…
本文先对FCN的会议论文进行了粗略的翻译,使读者能够对论文的结构有个大概的了解(包括解决的问题是什么,提出了哪些方案,得到了什么结果).然后,给出了几篇博文的连接,对文中未铺开解释的或不易理解的内容作了详尽的说明.最后给出了FCN代码的详解(待更新). Fully Convolutional Networks for Semantic Segmentation 用于语义分割的全卷积网络 摘要 卷积网络是可以产生具有层次结构的特征的强大的视觉模型.我们展示了只通过由端到端,像素像素训练的卷积网络进…
背景 CNN能够对图片进行分类,可是怎么样才能识别图片中特定部分的物体,在2015年之前还是一个世界难题.神经网络大神Jonathan Long发表了<Fully Convolutional Networks for Semantic Segmentation>在图像语义分割挖了一个坑,于是无穷无尽的人往坑里面跳. 全卷积网络 Fully Convolutional Networks CNN 与 FCN 通常CNN网络在卷积层之后会接上若干个全连接层, 将卷积层产生的特征图(feature m…
一.背景 kaggle上有这样一个题目,关于盐份预测的语义分割题目.TGS Salt Identification Challenge | Kaggle  https://www.kaggle.com/c/tgs-salt-identification-challenge 二.过程 1.下载数据,https://www.kaggle.com/c/tgs-salt-identification-challenge/data 数据说明: train.csv id rle_mask 4000项,即有4…
下面代码由搭档注释,保存下来用作参考. github项目地址:https://github.com/shekkizh/FCN.tensorflowfrom __future__ import print_function import tensorflow as tf import numpy as np import TensorflowUtils as utils import read_MITSceneParsingData as scene_parsing import datetime…