Introduction 这是斯坦福计算机视觉大牛李菲菲最新开设的一门关于deep learning在计算机视觉领域的相关应用的课程.这个课程重点介绍了deep learning里的一种比较流行的模型:Convolutional Neural Networks,简称CNN,主要利用CNN来做visual recognition,或者说是image classification,object recognition等.我自己在学习的过程中,一边翻译一边总结,整理出这些中文版的lecture not…
http://cs231n.github.io/   里面有很多相当好的文章 http://cs231n.github.io/convolutional-networks/ Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalization Layer Fully-Connected Layer Converting Fully-Connected Laye…
Table of Contents: Architecture Overview ConvNet Layers Convolutional Layer Pooling Layer Normalization Layer Fully-Connected Layer Converting Fully-Connected Layers to Convolutional Layers ConvNet Architectures Layer Patterns Layer Sizing Patterns C…
Convolutional Neural Networks (CNNs / ConvNets) 前面做了如此漫长的铺垫,现在终于来到了课程的重点.Convolutional Neural Networks, 简称CNN,与之前介绍的一般的神经网络类似,CNN同样是由可以学习的权值与偏移量构成,每一个神经元接收一些输入,做点积运算加上偏移量,然后选择性的通过一些非线性函数,整个网络最终还是表示成一个可导的loss function,网络的起始端是输入图像,网络的终端是每一类的预测值,通过一个ful…
Setting up the data and the model 前面我们介绍了一个神经元的模型,通过一个激励函数将高维的输入域权值的点积转化为一个单一的输出,而神经网络就是将神经元排列到每一层,形成一个网络结构,这种结构与我们之前介绍的线性模型不太一样,因此score function也需要重新定义,神经网络实现了一系列的线性映射与非线性映射,这一讲,我们主要介绍神经网络的数据预处理以及score function的定义. data processing 给定一个训练集,S={xi∈RD|i…
Linear Classification 在上一讲里,我们介绍了图像分类问题以及一个简单的分类模型K-NN模型,我们已经知道K-NN的模型有几个严重的缺陷,第一就是要保存训练集里的所有样本,这个比较消耗存储空间:第二就是要遍历所有的训练样本,这种逐一比较的方式比较耗时而低效. 现在,我们要介绍一种更加强大的图像分类模型,这个模型会很自然地引申出神经网络和Convolutional Neural Networks(CNN),这个模型有两个重要的组成部分,一个是score function,将原始…
Two Simple Examples softmax classifier 后,我们介绍两个简单的例子,一个是线性分类器,一个是神经网络.由于网上的讲义给出的都是代码,我们这里用公式来进行推导.首先看softmax classifier 的例子.给定输入X∈RN×D,权值W∈RD×K,偏移量b∈R1×K,我们可以得到分类器对每个样本的预测分数:f=XW+b,我们可以用softmax 函数将预测分数转为概率:pi=efi∑jefj,pi 表示样本属于第i类的概率,fi,fj表示线性函数对样本属于…
Modeling one neuron 下面我们开始介绍神经网络,我们先从最简单的一个神经元的情况开始,一个简单的神经元包括输入,激励函数以及输出.如下图所示: 一个神经元类似一个线性分类器,如果激励函数是sigmoid 函数(σ(x)=1/(1+e−x)),那么σ(∑iwixi+b)相当于是求该输入所对应的输出为1的概率,P(y=1|xi;w),那么该输入所对应的输出为0的概率为 P(y=0|xi;w)=1−P(y=1|xi;w).在神经网络中,常用的激励函数一个是sigmoid函数,另一个是…
1. 生物学家做实验发现脑皮层对简单的结构比如角.边有反应,而通过复杂的神经元传递,这些简单的结构最终帮助生物体有了更复杂的视觉系统.1970年David Marr提出的视觉处理流程遵循这样的原则,拿到图像后,先提取角.边.曲线等等简单的几何元素,然后再用深度信息.表面信息等更高层的复杂信息,最后是更高层的更抽象的表达. 深度学习也是遵循这样的基本思想,从最简单的特征出发,通过多层函数传递,实现复杂的功能. 2. Image-Net比赛,2012年突破性的变化,AlexNet用卷积神经网络大幅提…
网易云课堂上有汉化的视频:http://study.163.com/course/courseLearn.htm?courseId=1003223001#/learn/video?lessonId=1003705493&courseId=1003223001 笔记:http://weibo.com/1402400261/C0fOrnof0?u=2097796245&m=3935460336857237&cu=2097796245&ru=1402400261&rm=3…