首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
机器学习:评价分类结果(Precision - Recall 的平衡、P - R 曲线)
】的更多相关文章
机器学习:评价分类结果(Precision - Recall 的平衡、P - R 曲线)
一.Precision - Recall 的平衡 1)基础理论 调整阈值的大小,可以调节精准率和召回率的比重: 阈值:threshold,分类边界值,score > threshold 时分类为 1,score < threshold 时分类为 0: 阈值增大,精准率提高,召回率降低:阈值减小,精准率降低,召回率提高: 精准率和召回率是相互牵制,互相矛盾的两个变量,不能同时增高: 逻辑回归的决策边界不一定非是 ,也可以是任意的值,可根据业务而定:,大于 threshold 时分类为 1,小于…
目标检测的评价标准mAP, Precision, Recall, Accuracy
目录 metrics 评价方法 TP , FP , TN , FN 概念 计算流程 Accuracy , Precision ,Recall Average Precision PR曲线 AP计算 Average Precision mAP 参考资料 metrics 评价方法 针对谁进行评价? 对于物体分类到某个类别的 预测结果 和 真实结果 的差距进行评价(二分类) 在多分类问题中,评价方法是逐个类计算的,不是所有类一起算!是只针对一个类算,每个类别有自己的指标值! 也就是对每个类别,预测结果…
机器学习--如何理解Accuracy, Precision, Recall, F1 score
当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释准确率并不是衡量模型好坏的唯一指标,同时我也会对其他衡量指标做出一些简单说明. 首先我们先要了解混淆矩阵(Confusion Matrix), 如下图,混淆矩阵经常被用来衡量一个分类模型在测试样本上的性能,本文提到的所有衡量标准都会用到下面混淆矩阵中出现的的四个值 真正例和真反例表示被正确预测的数据…
机器学习基础梳理—(accuracy,precision,recall浅谈)
一.TP TN FP FN TP:标签为正例,预测为正例(P),即预测正确(T) TN:标签为负例,预测为负例(N),即预测正确(T) FP:标签为负例,预测为正例(P),即预测错误(F) FN:标签为正例,预测为负例(N),即预测错误(F) 其中 T:True F:False P:Positive N:Negative 由于缩写较为难记,我将其分别记为:真的正样本(TP),真的负样本(TN),假的正样本(FP),假的负样本(FN) 二.accuracy precision r…
机器学习classification_report方法及precision精确率和recall召回率 说明
classification_report简介 sklearn中的classification_report函数用于显示主要分类指标的文本报告.在报告中显示每个类的精确度,召回率,F1值等信息. 主要参数: y_true:1维数组,或标签指示器数组/稀疏矩阵,目标值. y_pred:1维数组,或标签指示器数组/稀疏矩阵,分类器返回的估计值. labels:array,shape = [n_labels],报表中包含的标签索引的可选列表. target_names:字符串列表,与标签匹配的可选显示…
机器学习:评价分类结果(ROC 曲线)
一.基础理解 1)定义 ROC(Receiver Operation Characteristic Curve) 定义:描述 TPR 和 FPR 之间的关系: 功能:应用于比较两个模型的优劣: 模型不限于是否通过极度偏斜的数据训练所得: 比较方式:ROC 曲线与坐标图形边界围成的面积,越大模型越优: TPR(True Positive Rate):真正率:被预测为正的正样本结果数 / 正样本实际数:TPR = TP /(TP + FN): TNR(True Negative Rate):真负率:…
机器学习:评价分类结果(F1 Score)
一.基础 疑问1:具体使用算法时,怎么通过精准率和召回率判断算法优劣? 根据具体使用场景而定: 例1:股票预测,未来该股票是升还是降?业务要求更精准的找到能够上升的股票:此情况下,模型精准率越高越优. 例2:病人诊断,就诊人员是否患病?业务要求更全面的找出所有患病的病人,而且尽量不漏掉一个患者:甚至说即使将正常人员判断为病人也没关系,只要不将病人判断成健康人员就好.此情况,模型召回率越高越优. 疑问2::有些情况下,即需要考虑精准率又需要考虑召回率,二者所占权重一样,怎么中欧那个判断? 方法:采…
通过Precision/Recall判断分类结果偏差极大时算法的性能
当我们对某些问题进行分类时,真实结果的分布会有明显偏差. 例如对是否患癌症进行分类,testing set 中可能只有0.5%的人患了癌症. 此时如果直接数误分类数的话,那么一个每次都预测人没有癌症的算法也是性能优异的. 此时,我们需要引入一对新的判别标准:Precision/Recall来进行算法的性能评判,它们的定义如下: 可以看出,Precision表示:预测一件事件发生,它实际发生的概率是多少.换言之:预测准的概率如何. Recall表示:一件事情实际发生了,能把它预测出来的概率是多少.…
机器学习之分类问题实战(基于UCI Bank Marketing Dataset)
导读: 分类问题是机器学习应用中的常见问题,而二分类问题是其中的典型,例如垃圾邮件的识别.本文基于UCI机器学习数据库中的银行营销数据集,从对数据集进行探索,数据预处理和特征工程,到学习模型的评估与选择,较为完整的展示了解决分类问题的大致流程.文中包含了一些常见问题的处理方式,例如缺失值的处理.非数值属性如何编码.如何使用过抽样和欠抽样的方法解决分类问题中正负样本不均衡的问题等等. 作者:llhthinker 欢迎转载,请保留原文链接:http://www.cnblogs.com/llhthin…
Precision,Recall,F1的计算
Precision又叫查准率,Recall又叫查全率.这两个指标共同衡量才能评价模型输出结果. TP: 预测为1(Positive),实际也为1(Truth-预测对了) TN: 预测为0(Negative),实际也为0(Truth-预测对了) FP: 预测为1(Positive),实际为0(False-预测错了) FN: 预测为0(Negative),实际为1(False-预测错了) 总的样本个数为:TP+TN+FP+FN. Accuracy/Precision/Recall的定义 Accura…