一.Multiple Features 这节课主要引入了一些记号,假设现在有n个特征,那么: 为了便于用矩阵处理,令\(x_0=1\): 参数\(\theta\)是一个(n+1)*1维的向量,任一个训练样本也是(n+1)*1维的向量,故对于每个训练样本:\(h_\theta(x)=\theta^Tx\). 二.Gradient Decent for Multiple Variables 类似地,定义代价函数: 同时更新参数直到\(J\)收敛: \[\theta_j:=\theta_j-\alph…
,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, 1 % Exercise 1: Linear regression with multiple variables %% Initialization %% ================ Part 1: Featu…
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) Octave 4.0.0 安装 win7(文库) Octave学习笔记(文库) octave入门(文库) WIN7 64位系统安装JDK并配置环境变量(总是显示没有安装Java) MathWorks This week we're covering linear regression with mul…
机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示为  公式可以简化为 两个矩阵相乘   其实就是所有参数和变量相乘再相加  所以矩阵的乘法才会是那样 那么他的代价函数就是 同样是寻找使J最小的一系列参数 python代码为 比如这种     那么X是[1,2,3]   y也是[1,2,3]   那么令theta0 = 0  theta1 = 1 …
Gradient Descent for Multiple Variables [1]多变量线性模型  代价函数 Answer:AB [2]Feature Scaling 特征缩放 Answer:D [3]学习速率 α Answer: B,因为第一个比第二个下降的快.第三个上升说明α太大 [4]Mean Normalization Answer:C [5]Normal Equation Answer:D Linear Regression with Multiple Variables [1]…
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样. § 2. 多变量线性回归 Linear Regression with Multiple Variables 1 多特征值(多变量) Multiple Features(Variables) 首先,举例说明了多特征值(多变量)的情况.在下图的例子中,…
1. Multiple features(多维特征) 在机器学习之单变量线性回归(Linear Regression with One Variable)我们提到过的线性回归中,我们只有一个单一特征量(变量)--房屋面积x.我们希望使用这个特征量来预测房子的价格.我们的假设在下图中用蓝线划出: 不妨思考一下,如果我们不仅仅知道房屋面积(作为预测房屋价格的特征量(变量)),我们还知道卧室的数量.楼层的数量以及房屋的使用年限,那么这就给了我们更多可以用来预测房屋价格的信息. 即,支持多变量的假设为:…
代价函数cost function 公式: 其中,变量θ(Rn+1或者R(n+1)*1) 向量化: Octave实现: function J = computeCost(X, y, theta) %COMPUTECOST Compute cost for linear regression % J = COMPUTECOST(X, y, theta) computes the cost of using theta as the % parameter for linear regression…
1. Multiple Features note:X0 is equal to 1 2. Feature Scaling Idea: make sure features are on a similiar scale, approximately a -1<Xi<1 range For example: x1 = size (0-2000 feet^2) max-min or standard deviation x2 = number of bedrooms(1-5) The conto…
相比于week1中讨论的单变量的线性回归,多元线性回归更具有一般性,应用范围也更大,更贴近实际. Multiple Features 上面就是接上次的例子,将房价预测问题进行扩充,添加多个特征(features),使问题变成多元线性回归问题. 多元线性回归将通过更多的输入特征,来预测输出.上面有新的Notation(标记)需要掌握. 相比于之前的假设: 我们将多元线性回归的假设修改为: 每一个xi代表一个特征:为了表达方便,令x0=1,可以得到假设的矩阵形式: 其中,x和theta分别表示: 所…