Science上发表的超赞聚类算法】的更多相关文章

本博客已经迁往http://www.kemaswill.com/, 博客园这边也会继续更新, 欢迎关注~ 作者(Alex Rodriguez, Alessandro Laio)提出了一种很简洁优美的聚类算法, 可以识别各种形状的类簇, 并且其超参数很容易确定. 算法思想 该算法的假设是, 类簇的中心由一些局部密度比较低的点围绕, 并且这些点距离其他高局部密度的点的距离都比较大. 首先定义两个值: 局部密度$\rho_i$以及到高局部密度点的距离$\delta_i$: $\rho_i=\sum_j…
作者(Alex Rodriguez, Alessandro Laio)提出了一种很简洁优美的聚类算法, 可以识别各种形状的类簇, 并且其超参数很容易确定. 算法思想 该算法的假设是类簇的中心由一些局部密度比较低的点围绕, 并且这些点距离其他有高局部密度的点的距离都比较大. 首先定义两个值: 局部密度以及到高局部密度点的距离: 其中 是一个截断距离, 是一个超参数. 所以相当于距离点i的距离小于的点的个数. 由于该算法只对的相对值敏感, 所以对dc的选择比较鲁棒, 一种推荐做法是选择使得平均每个点…
作者(Alex Rodriguez, Alessandro Laio)提出了一种很简洁优美的聚类算法, 可以识别各种形状的类簇, 并且其超参数很容易确定. 算法思想 该算法的假设是类簇的中心由一些局部密度比较低的点围绕, 并且这些点距离其他有高局部密度的点的距离都比较大. 首先定义两个值: 局部密度ρi以及到高局部密度点的距离δi: ρ i =∑ j χ(d ij −d c ) 其中 dc是一个截断距离, 是一个超参数. 所以ρi相当于距离点i的距离小于dc的点的个数. 由于该算法只对ρi的相对…
今年 6 月份,Alex Rodriguez 和 Alessandro Laio 在 Science 上发表了一篇名为<Clustering by fast search and find of density peaks>的文章,为聚类算法的设计提供了一种新的思路.虽然文章出来后遭到了众多读者的质疑,但整体而言,新聚类算法的基本思想很新颖,且简单明快,值得学习.这个新聚类算法的核心思想在于对聚类中心的刻画上,本文将对该算法的原理进行详细介绍,并对其中的若干细节展开讨论. 最后,附上作者在补充…
近期忙着在公司捣腾基于SOA的应急框架,还是前两周才在微博上看见了density_peak,被圈内好些人转载. 由于这个算法的名字起的实在惹眼,都没好意思怎么把这个算法名字翻译成中文,当然更惹眼的是,其极具杀伤力的案例介绍和公式简写,光看些许的中文翻译几乎无法入手,虽然也得知也有不少同学将其实践,但分享的经验不多,所以这才具有挑战和摸索的意义. 于是,中午吃了碗水饺,从E文入手开始捣腾. 整个过程涉及的知识点还是非常宽泛,再次要感谢美帝,百度文库的贡献. 1,density_peak宣传效果 前…
密度峰值聚类算法(DPC) 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1. 简介 基于密度峰值的聚类算法全称为基于快速搜索和发现密度峰值的聚类算法(clustering by fast search and find of density peaks, DPC).它是2014年在Science上提出的聚类算法,该算法能够自动地发现簇中心,实现任意形状数据的高效聚类. 该算法基于两个基本假设:1)簇中心(密度峰值点)的局部密度大于围绕它的邻居的局部密…
最近在学习论文的时候发现了在science上发表的关于新型的基于密度的聚类算法 Kmean算法有很多不足的地方,比如k值的确定,初始结点选择,而且还不能检测费球面类别的数据分布,对于第二个问题,提出了Kmean++,而其他不足还没有解决,dbscan虽然可以对任意形状分布的进行聚类,但是必须指定一个密度阈值,从而去除低于此密度阈值的噪音点,这篇文章解决了这些不足. 本文提出的聚类算法的核心思想在于,对聚类中心的刻画上,而且认为聚类中心同时具有以下两种特点: 本身的密度大,即它被密度均不超过它的邻…
本文介绍无监督学习算法,无监督学习是在样本的标签未知的情况下,根据样本的内在规律对样本进行分类,常见的无监督学习就是聚类算法. 在监督学习中我们常根据模型的误差来衡量模型的好坏,通过优化损失函数来改善模型.而在聚类算法中是怎么来度量模型的好坏呢?聚类算法模型的性能度量大致有两类: 1)将模型结果与某个参考模型(或者称为外部指标)进行对比,私认为这种方法用的比较少,因为需要人为的去设定外部参考模型. 2)另一种是直接使用模型的内部属性,比如样本之间的距离(闵可夫斯基距离)来作为评判指标,这类称为内…
一步步教你轻松学K-means聚类算法(白宁超  2018年9月13日09:10:33) 导读:k-均值算法(英文:k-means clustering),属于比较常用的算法之一,文本首先介绍聚类的理论知识包括什么是聚类.聚类的应用.聚类思想.聚类优缺点等等:然后通过k-均值聚类案例实现及其可视化有一个直观的感受,针对算法模型进行分析和结果优化提出了二分k-means算法.最后我们调用机器学习库函数,很短的代码完成聚类算法.(本文原创,转载必须注明出处:一步步教你轻松学K-means聚类算法 目…
一.算法简介 Affinity Propagation聚类算法简称AP,是一个在07年发表在Science上的聚类算法.它实际属于message-passing algorithms的一种.算法的基本思想将数据看成网络中的节点,通过在数据点之间传递消息,分别是吸引度(responsibility)和归属度(availability),不断修改聚类中心的数量与位置,直到整个数据集相似度达到最大,同时产生高聚类中心,并将其余各点分配到相应的聚类中. 二.算法描述 1.相关概念 Exemplar:指的…