Linux第四次学习笔记】的更多相关文章

程序的机器级表示 寻址方式的演变 DOS → 8086 → IA32 Inter处理器系列俗称x86,其演变过程(根据其所需要的晶体管数量来说明): 8086 → 80286 → i386 → i486 → Pentium → PentiumPro → Pentium II → Pentium III → Pentium 4 → Pentium 4E → Core 2 → Core i7 机器级代码 两种抽象极为重要: 1.机器级程序的格式和行为 指令集体系结构(ISA),它定义了处理器状态.指…
<Linux内核设计与实现>第四章学习笔记           ——进程调度 姓名:王玮怡  学号:20135116 一.多任务 1.多任务操作系统的含义 多任务操作系统就是能同时并发地交互执行多个进程的操作系统. 无论在单处理器或者多处理器机器上,多任务操作系统都能使多个进程处于堵塞或者睡眠状态,也就是说,实际上不被投入执行,直到工作确实就绪. 相反,这些进程利用内核阻塞自己,直到某一事件(键盘输入.网络数据.过一段时间等)发生. 2.多任务操作系统的分类 非抢占式多任务 抢占式多任务 3.…
                                                                    <Linux内核设计与实现>第四章学习笔记——进程调度 姓名:高艺桐  学号:20135109 一.多任务 1.多任务操作系统的含义 多任务操作系统就是能同时并发地交互执行多个进程的操作系统. 无论在单处理器或者多处理器机器上,多任务操作系统都能使多个进程处于堵塞或者睡眠状态,也就是说,实际上不被投入执行,直到工作确实就绪. 相反,这些进程利用内核阻塞自己,直…
Linux帮助命令简单学习笔记: 一: 命令名称:man 命令英文原意:manual 命令所在路径:/usr/bin/man 执行权限:所有用户 语法:man [命令或配置文件] 功能描述:获得帮助信息 范例: $ man ls 查看ls命令的帮助信息 $ man services 查看配置文件services的帮助信息 man 1 默认命令 5配置文件 二: 指令名称:info 指令英文原义:information 指令所在路径:/usr/bin/info 执行权限:All User 语法:i…
Spring实战第四章学习笔记----面向切面的Spring 什么是面向切面的编程 我们把影响应用多处的功能描述为横切关注点.比如安全就是一个横切关注点,应用中许多方法都会涉及安全规则.而切面可以帮我们模块化横切关注点.而当我们要重用通用功能时,最常见的面向编程技术是继承或委托.但当整个应用都用相同的基类继承会导致整个对象体系脆弱,而委托会使调用变复杂.切面则提供了取代继承和委托的另一种方案.在使用面向切面编程时,我们仍然在一个地方定义通用功能,但是可以通过声明的方式定义这个功能要以何种方式在何…
一.怎么查看系统上下文切换情况 通过前面学习我么你知道,过多的上下文切换,会把CPU时间消耗在寄存器.内核栈以及虚拟内存等数据的保存和回复上,缩短进程真正运行的时间,成了系统性能大幅下降的一个元凶 既然上下文切换对系统性能影响那么大,你肯定迫不及待想知道,道题怎么查看上下文切换 1.系统总的上下文切换情况 [root@nfs ~]# vmstat 1 procs -----------memory---------- ---swap-- -----io---- -system-- ------c…
一.上节回顾 上一节,我带你学习了 Linux 网络的基础原理.简单回顾一下,Linux 网络根据 TCP/IP模型,构建其网络协议栈.TCP/IP 模型由应用层.传输层.网络层.网络接口层等四层组成,这也是 Linux 网络栈最核心的构成部分. 应用程序通过套接字接口发送数据包时,先要在网络协议栈中从上到下逐层处理,然后才最终送到网卡发送出去:而接收数据包时,也要先经过网络栈从下到上的逐层处理,最后送到应用程序. 了解 Linux 网络的基本原理和收发流程后,你肯定迫不及待想知道,如何去观察网…
一.上节回顾 上一节,我们学习了碰到分布式拒绝服务(DDoS)的缓解方法.简单回顾一下,DDoS利用大量的伪造请求,导致目标服务要耗费大量资源,来处理这些无效请求,进而无法正常响应正常用户的请求. 由于 DDoS 的分布式.大流量.难追踪等特点,目前确实还没有方法,能够完全防御DDoS 带来的问题,我们只能设法缓解 DDoS 带来的影响. 比如,你可以购买专业的流量清洗设备和网络防火墙,在网络入口处阻断恶意流量,只保留正常流量进入数据中心的服务器. 在 Linux 服务器中,你可以通过内核调优.…
一.上节回顾 上一节,我们学习了 NAT 的原理,明白了如何在 Linux 中管理 NAT 规则.先来简单复习一下. NAT 技术能够重写 IP 数据包的源 IP 或目的 IP,所以普遍用来解决公网 IP 地址短缺的问题.它可以让网络中的多台主机,通过共享同一个公网 IP 地址,来访问外网资源.同时,由于 NAT 屏蔽了内网网络,也为局域网中机器起到安全隔离的作用. Linux 中的 NAT ,基于内核的连接跟踪模块实现.所以,它维护每个连接状态的同时,也对网络性能有一定影响.那么,碰到 NAT…
一.上节回顾 上一节,我们了解了 NAT(网络地址转换)的原理,学会了如何排查 NAT 带来的性能问题,最后还总结了 NAT 性能优化的基本思路.我先带你简单回顾一下. NAT 基于 Linux 内核的连接跟踪机制,实现了 IP 地址及端口号重写的功能,主要被用来解决公网 IP 地址短缺的问题. 在分析 NAT 性能问题时,可以先从内核连接跟踪模块 conntrack 角度来分析,比如用systemtap.perf.netstat 等工具,以及 proc 文件系统中的内核选项,来分析网络协议栈的…
一.上节回顾 上一节,我们学了网络性能优化的几个思路,我先带你简单复习一下. 在优化网络的性能时,你可以结合 Linux 系统的网络协议栈和网络收发流程,然后从应用程序.套接字.传输层.网络层再到链路层等每个层次,进行逐层优化.上一期我们主要学习了应用程序和套接字的优化思路,比如: 在应用程序中,主要优化 I/O 模型.工作模型以及应用层的网络协议: 在套接字层中,主要优化套接字的缓冲区大小. 今天,我们顺着 TCP/IP 网络模型,继续向下,看看如何从传输层.网络层以及链路层中,优化 Linu…
一.上节回顾 专栏更新至今,四大基础模块的最后一个模块——网络篇,我们就已经学完了.很开心你还没有掉队,仍然在积极学习思考和实践操作,热情地留言和互动.还有不少同学分享了在实际生产环境中,碰到各种性能问题的分析思路和优化方法,这里也谢谢你们. 今天是性能优化答疑的第五期.照例,我从网络模块的留言中,摘出了一些典型问题,作为今天的答疑内容,集中回复.同样的,为了便于你学习理解,它们并不是严格按照文章顺序排列的. 每个问题,我都附上了留言区提问的截屏.如果你需要回顾内容原文,可以扫描每个问题右下方的…
一.上节回顾 上一节,我们一起学习了如何分析网络丢包的问题,特别是从链路层.网络层以及传输层等主要的协议栈中进行分析. 不过,通过前面这几层的分析,我们还是没有找出最终的性能瓶颈.看来,还是要继续深挖才可以.今天,我们就来继续分析这个未果的案例. 在开始下面的内容前,你可以先回忆一下上节课的内容,并且自己动脑想一想,除了我们提到的链路层.网络层以及传输层之外,还有哪些潜在问题可能会导致丢包呢? 二.iptables 首先我们要知道,除了网络层和传输层的各种协议,iptables 和内核的连接跟踪…
一.上节回顾 上一期,我们一起梳理了,网络时不时丢包的分析定位和优化方法.先简单回顾一下.网络丢包,通常会带来严重的性能下降,特别是对 TCP 来说,丢包通常意味着网络拥塞和重传,进而会导致网络延迟增大以及吞吐量降低. 而分析丢包问题,还是用我们的老套路,从 Linux 网络收发的流程入手,结合 TCP/IP 协议栈的原理来逐层分析. 其实,在排查网络问题时,我们还经常碰到的一个问题,就是内核线程的 CPU 使用率很高.比如,在高并发的场景中,内核线程 ksoftirqd 的 CPU 使用率通常…
第十四章:呈现数据 理解输入与输出 标准文件描述符 文件描述符 缩写 描述 0 STDIN 标准输入 1 STDOUT 标准输出 2 STDERR 标准错误 1.STDIN 代表标准输入.对于终端界面来说,标准输入是键盘 使用输入重定向符号(<)时,Linux会用重定向指定的文件来替换标准输入文件描述符 2.STDOUT 代表标准输出.对于终端界面来说,标准输出是屏幕 3.STDERR 代表标准错误输出.默认情况下,STDOUT文件描述符和STDERR文件描述符指向同样的地方,即显示器. 重定向…
一.上节回顾 不知不觉,我们已经学完了整个专栏的四大基础模块,即 CPU.内存.文件系统和磁盘 I/O.以及网络的性能分析和优化.相信你已经掌握了这些基础模块的基本分析.定位思路,并熟悉了相关的优化方法. 接下来,我们将进入最后一个重要模块—— 综合实战篇.这部分实战内容,也将是我们对前面所学知识的复习和深化. 我们都知道,随着 Kubernetes.Docker 等技术的普及,越来越多的企业,都已经走上了应用程序容器化的道路.我相信,你在了解学习这些技术的同时,一定也听说过不少,基于 Dock…
一.上节回顾 上一节,我们梳理了,应用程序容器化后性能下降的分析方法.一起先简单回顾下.容器利用 Linux 内核提供的命名空间技术,将不同应用程序的运行隔离起来,并用统一的镜像,来管理应用程序的依赖环境.这为应用程序的管理和维护,带来了极大的便捷性,并进一步催生了微服务.云原生等新一代技术架构. 不过,虽说有很多优势,但容器化也会对应用程序的性能带来一定影响.比如,上一节我们一起分析的 Java 应用,就容易发生启动过慢.运行一段时间后 OOM 退出等问题.当你碰到这种问题时,不要慌,我们前面…
一.上节回顾 上一节,我带你学习了,如何使用 USE 法来监控系统的性能,先简单回顾一下. 系统监控的核心是资源的使用情况,这既包括 CPU.内存.磁盘.文件系统.网络等硬件资源,也包括文件描述符数.连接数.连接跟踪数等软件资源.而要描述这些资源瓶颈,最简单有效的方法就是 USE 法. USE 法把系统资源的性能指标,简化为了三个类别:使用率.饱和度以及错误数. 当这三者之中任一类别的指标过高时,都代表相对应的系统资源可能存在性能瓶颈. 基于 USE 法建立性能指标后,我们还需要通过一套完整的监…
一.常见的压缩格式: 二..zip格式压缩 1.压缩文件.文件夹 zip 压缩后文件名(.zip结尾) 压缩文件名zip -r 压缩后文件夹(.zip结尾) 压缩文件 2.解压缩 unzip 压缩文件 三..gz格式压缩 1.压缩 gzip 源文件 #压缩为.gz格式的压缩文件,源文件会消失 gzip -c 源文件 > 压缩文件 #压缩为.gz格式,源文件保留 gzip -r 目录 #压缩目录下所有的子文件,但是不能压缩目录 2.解压缩 gzip -d 压缩文件 #解压缩文件 gunzip 压缩…
一.磁盘 1.机械磁盘 2.固态磁盘 3.相同磁盘随机I/O比连续I/O慢很多 4.最小单位 5.接口 6.RAID陈列卡 7.网路存储 二.通用块层 1.概念 2.第一功能 3.第二功能 4.I/O调度算法 三.I/O栈 1.Linux存储系统I/O栈全景图 2.全景图详解 1.文件系统层 2.通用块层 3.设备层 4.存储系统的I/O 5.优化…
1:标准IO Unix中的标准IO主要包括:标准输入.标准输出(正常输出).标准错误(异常信息) 2:重定向输出 内容 > 文件名 :将内容输出到文件,并且覆盖文件原来内容:文件不存在则新建 内容 >> 文件名:将内容追加到文件末尾 3:重定向输入 指令 < 文件名 :从文件中读取数据给指令处理 4:管道线 一个程序的标准输出能自动作为下一个程序的标准输入. 指令1 | 指令2 :指令1的输出作为指令2的输入 5:组合输出 tee 文件名:从标准输入读取数据,并向标准输出和文件发送…
主要讲两个用户管理的案例: 1: 限制用户su为root,只允许某个组的的用户su # groupadd sugroup 首先添加我们的用户组 # chmod 4550 /bin/su 改变命令的权限 # chgrp sugroup /bin/su 改变命令的所属组 # ls -l /bin/su 查看命令的权限 -r-sr-x--- 1 root sugroup 18360 Jan 15 2010 /bin/su 设定后,只有sugroup组中的用户可以使用su切换为root # userad…
46 | 访问网络服务 前导内容:socket 与 IPC 人们常常会使用 Go 语言去编写网络程序(当然了,这方面也是 Go 语言最为擅长的事情).说到网络编程,我们就不得不提及 socket. socket,常被翻译为套接字,它应该算是网络编程世界中最为核心的知识之一了.关于 socket,我们可以讨论的东西太多了,因此,我在这里只围绕着 Go 语言向你介绍一些关于它的基础知识. 所谓 socket,是一种 IPC 方法.IPC 是 Inter-Process Communication 的…
异常控制流 异常控制流(ECF)发生在计算机系统的各个层次 在硬件层,硬件检测到的事件会触发控制突然转移到异常处理程序. 在操作系统层,内核通过上下文转换将控制从一个用户进程转移到另一个用户进程. 在应用层,一个进程可以发送信号到另一个进程,而接收者会将控制突然转移到它的一个信号处理程序. ECF是操作系统用来实现I/O.进程和虚拟存储器的基本机制. 应用程序通过使用陷阱(trap)或者系统调用的ECF形式,向操作系统请求服务. ECF是计算机系统中实现并发的基本机制. 异常 异常就是控制流中的…
虚拟存储器 虚拟存储器是硬件异常.硬件地址翻译.主存.磁盘文件和内核软件的完美交互. 虚拟存储器的特点: 中心的 强大的 危险的 物理和虚拟寻址 计算机系统的主存被组织成一个由M个连续的字节大小的单元组成的数据 每个字节都有一个唯一的物理地址 第一个字节的地址为0,接下来的抵制依次+1 这种方式称为物理寻址 虚拟寻址时,CPU通过生成一个虚拟地址来访问主存,该地址被送到存储器之前先转换成适当的物理地址.该任务叫做地址翻译. 地址需要CPU硬件和操作系统之间紧密合作 存储器管理单元(在CPU上)利…
第十八章 调试 内核级开发的调试工作远比用户级开发艰难,它带来的风险比用户级别更高. 一.准备开始 1. 准备工作需要: 一个bug 一个藏匿bug的内核版本 相关内核代码的知识和运气 2. 在用户级程序中bug常常表现得清晰(执行foo就会让程序立即产生核心信息转储)但是内核中的bug表现得不像用户级程序中那么清晰.因为内核.用户以及硬件之间的交互很微妙. 3. 调试的主要思想是让bug重现,但是在内核中这并不是很容易做到的.因此,在跟踪bug的时候,掌握的信息越多越好. 二.内核中的bug…
---恢复内容开始--- 第五章 系统调用 一.与内核通信 1.系统调用在用户控件进程和硬件设备之间添加了一个中间层. 为用户空间提供了一种硬件的抽象接口 系统调用保证了系统的稳定和安全 每个进程都运行在虚拟系统中,而在用户控件和系统的其余部分提供这样一层公共接口 2.作用 在Linux中,系统调用是用户空间访问内核的唯一手段 . 二.API.POSIX和C库 Linux的系统调用作为C库的一部分提供.C库:Unix系统的主要API,包括标准C库函数和系统调用接口,即POSIXdM大部分API.…
赵瀚青原创作品转载请注明出处<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 概述 本周学习的内容主要是讨论可执行文件,最开始讲解了可执行文件是怎么得来的,也就是上个学期娄老师教我们的四步,预处理,编译成汇编指令,变成二进制代码,最后执行可执行文件.然后讲解了可执行文件的演变,从最开始的a.out文件,演变成ELF文件,然后讲解了如何装载可执行文件.也就是这周的实验内容,先用test_execv.c覆盖tect.…
mkdir -p [目录]创建目录-p 递归创建ls 查看当前目录下的文件和目录等其他文件 cd [目录]命令英文愿意:change directory切换所在目录简化操作cd ~ 进入当前用户的家目录cdcd - 进入上次目录cd .. 进入上级目录cd . 进入当前目录 linux 的Tab键可以自动补全文件名称或命令名称 pwd查询所在目录位置命令英文愿意:print working directory rmdir [目录名]命令英文原意:remove empty directories作…
一.内存的分配和回收 1.管理内存的过程中,也很容易发生各种各样的“事故”, 对应用程序来说,动态内存的分配和回收,是既核心又复杂的一的一个逻辑功能模块.管理内存的过程中,也很容易发生各种各样的“事故”, 比如,没正确回收分配后的内存,导致了泄漏.访问的是已分配内存边界外的地址,导致程序异常退出,等等. 你在程序中定义了一个局部变量,比如一个整数数组 int data[64] ,就定义了一个可以存储 64 个整数的内存段.由于这是一个局部变量,它会从内它会从内存空间的栈中分配内存 1.栈内存由系…