例程:classify_halogen_bulbs.hdev 在Halcon中模式匹配最成熟最常用的方式该署支持向量机了,在本例程中展示了使用支持向量机对卤素灯的质量检测方法.通过这个案例,相信大家可以对支持向量机的使用有一个更加清晰的了解.在相当多的检测和识别的应用中,都可以使用相同的方法来解决分类问题. 图1. 卤素灯图像 大致原理: 一.准备阶段:描述样本 1. 准备好两组卤素灯图像样本,好坏的各若干张图像: 2. 对样本图像进行分割,获取卤素灯关键部位区域: 3. 选择合适的对图像的描述…
例程:class_overlap_svm.hdev 说明:这个例程展示了如何用一个支持向量机来给一幅二维的图像进行分类.使用二维数据的原因是因为它可以很容易地联想成为区域和图像.本例程中使用了三个互相重叠的类(由二维平面三个不同颜色的像素点集组成).三类不同颜色的像素点作为样本,将那些样本代入支持向量机进行训练.选取像素在二维平面的坐标作为特征向量,使支持向量机对这个二维特征区域进行分类.在结果中我们可以看到,支持向量机会将特性区域(也就是整个二维平面)中每一个的像素点分割为这三个类中的一类.因…
1 SVM 基本概念 本章节主要从文字层面来概括性理解 SVM. 支持向量机(support vector machine,简SVM)是二类分类模型. 在机器学习中,它在分类与回归分析中分析数据的监督式学习模型及相关的学习算法:在给定的一组训练实例中,每个训练实例会被标记其属性类别(两个类别中的一个),是非概率的二元线性分类器. SVM模型是将采用尽可能宽的.明显的间隔将实例分开,使得实例分属不同的空间:然后将新的实例映射到某一空间,基于新的实例所属空间来预测其类别. SVM 除了可进行线性分类…
转自:http://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html 机器视觉工程应用主要可划分为硬件和软件两大部分. 硬件:工程应用的第一步就是硬件选型.硬件选型很关键,因为它是你后面工作的基础.主要是光源.工业相机和镜头选择. 软件:目前业内商业库主要有Halcon,康耐视,DALSA,evision,NI等,开源库有OpenCV.其中NI的labview+vision模块. 机器视觉工程应用的基本开发思路是: 一.图像采集…
一维码的原理与结构 条码基本原理是利用条纹和间隔或宽窄条纹(间隔)构成二进制的”0“和”1“,反映的是某种信息. 一维条码数据结构,分四个区域.组成分别为静区.起始/终止符.校验符.数据符. 一维条码的意识形态结构,分三条. 构成一维码的基本单元是模块,模块是指条码中最窄的条或空: 构成条码的条或空称为一个单元,一个单元包含多个或单个模块: 一个单元包含的模块数量由编码方式决定,即形成了不同的码制. 一维码的定位与识别 基本halcon工具算子,create_bar_code_model()生成…
机器视觉应用工程开发思路 机器视觉应用工程主要可划分为两大部分,硬件部分和软件部分. 1.硬件部分,硬件的选型至关重要,决定了后续工作是否可以正常开展,其中关键硬件部分包括:光源,相机以及镜头. 2.软件部分,目前业内商业库主要有Halcon,康耐视,DALSA,evision,NI等,开源库有OpenCV.其中NI的labview+vision模块. 机器视觉应用工程大致开发思路:       一.获取图像              图像采集可以来源多个途径,用算子read_image去读取图…
转:https://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html 机器视觉工程应用主要可划分为硬件和软件两大部分. 硬件:工程应用的第一步就是硬件选型.硬件选型很关键,因为它是你后面工作的基础.主要是光源.工业相机和镜头选择. 软件:目前业内商业库主要有Halcon,康耐视,DALSA,evision,NI等,开源库有OpenCV.其中NI的labview+vision模块. 机器视觉工程应用的基本开发思路是: 一.图像采集…
一 读取的3种方式: 读取单张的图片: read_image( image,'filename') //image 是输出对象,后面是输入文件的路径和名称 读取多图: 1,申明一个数组,分别保存路径 ImagePath:=[] ImagePath[0]:='D:/1.bmp' ImagePath[1]:='D:/2.bmp' ImagePath[2]:='D:/3.bmp' for i:=0 to 2 by 1 read_image(Image,ImagePath[i]) endfor 2,fo…
例程:detect_indent_fft.hdev 说明:这个程序展示了如何利用快速傅里叶变换(FFT)对塑料制品的表面进行目标(缺陷)的检测,大致分为三步: 首先,我们用高斯滤波器构造一个合适的滤波器(将原图通过高斯滤波器滤波): 然后,将原图和构造的滤波器进行快速傅里叶变换: 最后,利用形态学算子将缺陷表示在滤波后的图片上(在缺陷上画圈). 注:代码中绿色部分为个人理解和注释,其余为例程中原有代码 *Initialization(初始化) dev_updata_off() //这一句包含如下…
例程:surface_scratch.hdev 说明:这个程序利用局部阈值和形态学处理提取表面划痕 代码中绿色部分为个人理解和注释,其余为例程中原有代码 *surface_scratch.hdev:extraction of surface scratches via local thresholding and morphological post-processing* dev_close_window() dev_update_window('off') ***** *step: acqu…