题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2818 题意:给定整数N,求1<=x,y<=n且Gcd(x,y)为素数的数对(x,y)有多少对 思路:先筛出n以内所有的素数顺便筛出欧拉函数,\(gcd(x,y)=k\)等价于\(gcd(\frac{x}{k},\frac{y}{k})=1\) 所以这个问题可以转化为求\(ans=\sum_{i=1}^{tot}\sum_{j=1}^{n/prime[i]}phi[j]\) ,tot为…
正解:莫比乌斯反演/欧拉函数 解题报告: 传送门$QwQ$ 一步非常显然的变形,原式=$\sum_{d=1,d\in prim}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i,j)==d]$ 后面那个就莫比乌斯反演入门题辣$QwQ$? 就变成$\sum_{p=1}^{n}[p\mbox{为质数}]\sum_{d=1}^{n/p}\mu(d)\lfloor \frac {n/p}{d}\rfloor^2$ 十分套路的,后面显然可以数论分块,就变成了$\sum_{p=1…
2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3241  Solved: 1437[Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT hint 对于样例(2,2),(2,4),(3,3),(4,2) 1&…
简化题意可知,实际上题目求得是gcd(i,j)=1(i,j<=n)的数对数目. 线性筛出n大小的欧拉表,求和*2+1即可.需要特判1. # include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # inclu…
题目: SPOJ-GCDEX (洛谷 Remote Judge) 分析: 求: \[\sum_{i=1}^{n}\sum_{j=i+1}^{n}gcd(i,j)\] 这道题给同届新生讲过,由于种种原因只讲了 \(O(n)\) 预处理欧拉函数 \(O(n)\) 查询的暴力做法,顺带提了一句 "这题能根号查询" 被教练嘴了 QAQ .以及小恐龙给我说有 \(O(n\log n)\) 预处理 \(O(1)\) 查询的另一种写法. 重点是前几天某学长讲课讲这道题,才知道有 \(O(n)\) 预…
/* 题意:(n)表示小于n与n互质的数有多少个,给你两个数a,b让你计算a+(a+1)+(a+2)+......+b; 初步思路:暴力搞一下,打表 #放弃:打了十几分钟没打完 #改进:欧拉函数:具体证明看po主的博客 ^0^ #超时:这里直接用欧拉函数暴力搞还是不可以的,用到线性筛欧拉函数,这里总和爆int,要用long long */ #include<bits/stdc++.h> #define ll long long using namespace std; /***********…
GCD  nyoj 1007 (欧拉函数+欧几里得) GCD 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6.(a,b) can be…
O(n) 筛选素数 #include<bits/stdc++.h> using namespace std; const int M = 1e6 + 10 ; int mindiv[M] ;//每个数的最小质因数 int prim[M] , pnum ;//存素数 bool vis[M] ; void prim () { for (int i = 2 ; i < M ; i ++) { if (!vis[i]) { mindiv[i] = i ; prim[ pnum++ ] = i ;…
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2190 分析:就是要线性筛出欧拉函数... 直接贴代码了: memset(ans,,sizeof(ans)); ans[]=; ;i<=n;++i) if(!ans[i]) for(int j=i;j<=n;j+=i) { if(!ans[j]) ans[j]=j; ans[j]=ans[j]/i*(i-); }…
转载自:http://www.cnblogs.com/candy99/p/6200660.html 2818: Gcd Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4436  Solved: 1957[Submit][Status][Discuss] Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. 1<=N<=10^7 uva上做过gcd(x,y)=1的题 gcd(x,y…