首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
D. Makoto and a Blackboard(积性函数+DP)
】的更多相关文章
CF1097D Makoto and a Blackboard 积性函数、概率期望、DP
传送门 比赛秒写完ABC结果不会D--最后C还fst了qwq 首先可以想到一个约数个数\(^2\)乘上\(K\)的暴力DP,但是显然会被卡 在\(10^{15}\)范围内因数最多的数是\(978217616376000=2^6 \times 3^4 \times 5^3 \times 7^2 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29\),它有\(26880\)个因数 但是不难发现:在我们的答案中参与计算的只有约数个数函…
Makoto and a Blackboard CodeForces - 1097D (积性函数dp)
大意: 初始一个数字$n$, 每次操作随机变为$n$的一个因子, 求$k$次操作后的期望值. 设$n$经过$k$次操作后期望为$f_k(n)$. 就有$f_0(n)=n$, $f_k(n)=\frac{\sum\limits_{d|n}{f_{k-1}(d)}}{\sigma_0(n)}, k>0$. 显然$f_k(n)$为积性函数, $dp$算出每个素因子的贡献即可. #include <iostream> #include <sstream> #include <a…
Bash Plays with Functions CodeForces - 757E (积性函数dp)
大意: 定义函数$f_r(n)$, $f_0(n)$为pq=n且gcd(p,q)=1的有序对(p,q)个数. $r \ge 1$时, $f_r(n)=\sum\limits_{uv=n}\frac{f_{r-1}(u)+f_{r-1}(v)}{2}$. $q$组询问, 求$f_r(n)$的值模1e9+7. 显然可以得到$f_0(n)=2^{\omega(n)}$, 是积性函数. 所以$f_r=f_{r-1}*1$也为积性函数, 然后积性函数$dp$即可. 问题就转化为对每个素数$p$, 求$dp…
D. Makoto and a Blackboard(积性函数+DP)
题目链接:http://codeforces.com/contest/1097/problem/D 题目大意:给你n和k,每一次可以选取n的因子代替n,然后问你k次操作之后,每个因子的期望. 具体思路:对于给定的n,我们可以将n转换为,n=p1^(k1)*p2^(k2)*p3^(k3)......,然后我们求期望的时候,我们可以求每个因子的期望,然后再将每个因子的期望相乘就可以了(积性函数的性质). 然后我们使用一个dp数组,dp[i][j]代表某一个因子,经过i次操作,出现j次的概率. 数学期…
Codeforces757E.Bash Plays With Functions(积性函数 DP)
题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\sum_{u\times v=n}\frac{f_r(u)+f_r(v)}{2}\] \(Solution\) 首先将\(f_r\)的式子化为 \[ f_{r+1}(n)=\sum_{d|n}f_r(d)\] 即\(f_{r+1}(n)\)为\(f_r(n)\)与\(g(n)=1\)的狄利克雷卷积.…
Codeforces E. Bash Plays with Functions(积性函数DP)
链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} = \sum_{d|n}f_r(d)\] \(f_r+1\)可以看做\(f_r()\)和\(g(d)\)的狄利克雷卷积因为\(f_0()\)是积性函数,\(g(d)\)也是积性函数,由卷积性质得\(f_{r+1}()\)也是积性函数,那么\(f_r\)同理 对于\(n\)质因数分解得到: \[n=…
Problem : 这个题如果不是签到题 Asm.Def就女装(积性函数dp
https://oj.neu.edu.cn/problem/1460 思路:若n=(p1^a1)*(p2^a2)...(pn^an),则f(n,0)=a1*a2*...*an,显然f(n,0)是积性函数,对于f(x,y)可以看出他是f(x,y-1)与自身进行狄利克雷卷积得到的结果,所以f(x,y)也是积性函数.因此,只要对n质因子分解,然后与预理出次方的dp值即可.注意积性函数的概念中a,b必须互质! #include<bits/stdc++.h> #define int long long…
CF 757E Bash Plays with Functions——积性函数+dp+质因数分解
题目:http://codeforces.com/contest/757/problem/E f0[n]=2^m,其中m是n的质因子个数(种类数).大概是一种质因数只能放在 d 或 n/d 两者之一. 然后应该发现因为 f0 是积性的,所以 fr 也是积性的!因为是卷积得来的. 这样就能把每个质因数分开.对于每种质因数考虑 fr 的转移,则 f [ r ][ p^k ] = sigma(i:0~k) ( f [ r-1 ][ p^i ] ) . 应该发现 f0 里每种质因数的值只和其次数有关,从…
bzoj2693--莫比乌斯反演+积性函数线性筛
推导: 设d=gcd(i,j) 利用莫比乌斯函数的性质 令sum(x,y)=(x*(x+1)/2)*(y*(y+1)/2) 令T=d*t 设f(T)= T可以分块.又由于μ是积性函数,积性函数的约束和仍是积性函数,所以f也是积性函数,可以O(n)线性筛求得.总时间复杂度为 具体筛法看代码. 代码: #include<iostream> #include<cstdio> #include<cstring> using namespace std; #define mod…
hdu1452 Happy 2004(规律+因子和+积性函数)
Happy 2004 题意:s为2004^x的因子和,求s%29. (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子和: Sum=(p1^0+p1^1-.p1^e1)*(p2^0+p2^1-p2^e2)--(pn^0+-pn^en) =; 积性函数:s(xy)=s(x)*s(y) (比如:幂函数,因子和,欧拉函数,莫比乌斯函数) 对于正整数n的一个算术函数 f(n),若f(1)=1,且当a,b互质时f…