(快速幂)Key Set--hdu--5363】的更多相关文章

思想启发来自, 罗博士的根据递推公式构造系数矩阵用于快速幂 对于矩阵乘法和矩阵快速幂就不多重复了,网上很多博客都有讲解.主要来学习一下系数矩阵的构造 一开始,最一般的矩阵快速幂,要斐波那契数列Fn=Fn-1+Fn-2的第n项,想必都知道可以构造矩阵来转移 其中,前面那个矩阵就叫做系数矩阵(我比较喜欢叫转移矩阵) POJ3070 Fibonacci 可以试一试 #include<cstdio> typedef long long ll; ; struct Mar{ int r,c; ll a[]…
这个题目套公式 2^(n-1)-1,再来个快速幂基本上就可以AC了 写这个题目的: 公式容易推到错: 容易写成 2^n-1/2...这样写出来结果也不错  但是一直哇 AC: #include<iostream> #include<cstdio> #include<cstring> #define N 1000000007 using namespace std; typedef long long ll; int pow(ll x,ll y) { ll res=; w…
#include <iostream> using namespace std;const int MOD = 1000;//像这样的一个常量就应该专门定义一下 int PowMod(int a, int n)//a^n%MOD { int ret = 1; while(n) { if(n & 1) ret = ret * a % MOD; //变为二进制,然后就可以专门进行分解计算,十分的方便,要求是结合位运算一同使用 a = a * a % MOD; //这里要求特别的注意,因为是…
HDU 1061 题目大意:给定数字n(1<=n<=1,000,000,000),求n^n%10的结果 解题思路:首先n可以很大,直接累积n^n再求模肯定是不可取的, 因为会超出数据范围,即使是long long也无法存储. 因此需要利用 (a*b)%c = (a%c)*(b%c)%c,一直乘下去,即 (a^n)%c = ((a%c)^n)%c; 即每次都对结果取模一次 此外,此题直接使用朴素的O(n)算法会超时,因此需要优化时间复杂度: 一是利用分治法的思想,先算出t = a^(n/2),若…
Time Limit: 2000/1000 MS (Java/Others)   Memory Limit: 131072/131072 K (Java/Others) Problem Description soda has a set S with n integers {1,2,…,n}. A set is called key set if the sum of integers in the set is an even number. He wants to know how man…
传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/details/52577212 [分析]一开始想简单了,对于a^x mod p这种形式的直接用欧拉定理的数论定理降幂了 结果可想而知,肯定错,因为题目并没有保证gcd(x,s+1)=1,而欧拉定理的数论定理是明确规定的 所以得另谋出路 那么网上提供了一种指数循环节降幂的方法 具体证明可以自行从网上找一找 有…
http://acm.hdu.edu.cn/showproblem.php?pid=2855 化简这个公式,多写出几组就会发现规律 d[n]=F[2*n] 后面的任务就是矩阵快速幂拍一个斐波那契模板出来了 这里用的是2维 vector #include<iostream> #include<cstdio> #include<vector> using namespace std; typedef vector<int>vec; typedef vector&…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ 解题思路: 题目挺吓人的.先把完整组合数+Fibonacci展开来. 利用Fibonacci的特性,从第一项开始消啊消,消到只有一个数: $S(0)=f(0)$ $S(1)=f(2)$ $S(2)=f(4)$ $S(n)=f(2*n)$ 这样矩阵快速幂就可以了,特判$n=0$时的情况. 快速幂矩阵…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2842 题目大意:棒子上套环.第i个环能拿下的条件是:第i-1个环在棒子上,前i-2个环不在棒子上.每个环可以取下或放上,cost=1.求最小cost.MOD 200907. 解题思路: 递推公式 题目意思非常无聊,感觉是YY的. 设$dp[i]$为取第i个环时的总cost. $dp[1]=1$,$dp[2]=2$,前两个环取下是没有条件要求的. 从i=3开始,由于条件对最后的环限制最大,所以从最后一…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写出方程: D = c1 c2 ``` c[h-1] c[h] 1 0 ``` 0 0 0 1 ``` 0 0 0 0   0 0 0 0   1 0 V[x] = f[x] f[x-1] ` ` f[x-h+1] 显然有V[x+1] = D*V[x].D是由系数行向量,一个(h-1)*(h-1)的单…
Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的总和. analyse: N可达10^100000,只能用数学方法来做. 首先想到的是找规律.通过枚举小数据来找规律,发现其实answer=pow(2,n-1); 分析到这问题就简单了.由于n非常大,所以这里要用到费马小定理:a^n ≡ a^(n%(m-1)) * a^(m-1)≡ a^(n%(m-…
Tom and matrix Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analyse: 直接可以用Lucas定理+快速幂水过的,但是我却作死的用了另一种方法. 方法一:Lucas定理+快速幂水过 方法二:首先问题可以转化为求(0,0),(n,m)这个子矩阵的所有数之和.画个图容易得到一个做法,对于n<=m,答案就是2^0+2^1+...+2^m=2^(m+1)-1,对于n>m…
题 Description soda has a set $S$ with $n$ integers $\{1, 2, \dots, n\}$. A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets of $S$ are key set.   Input There are multiple test cases…
http://acm.hdu.edu.cn/showproblem.php?pid=5950 题意:给出 a,b,n,递推出 f(n) = f(n-1) + f(n-2) * 2 + n ^ 4. f(1) = a, f(2) = b. 思路:在比赛时候知道是矩阵快速幂,可是推不出矩阵.那个n^4不知道怎么解决.结束后问其他人才知道要构造一个7 * 7的矩阵,而不是3 * 3的.. 转自:http://blog.csdn.net/spring371327/article/details/5297…
http://acm.hdu.edu.cn/showproblem.php?pid=5451 题意:给定x    求解 思路: 由斐波那契数列的两种表示方法, 之后可以转化为 线性表示 F[n] = F[n-1] + F[n-2] ; 同时可以看出   和 是 一元二次方程的两根, a  = 1, b = -1 又是之后递推式的系数: 同理这里需要构造出两根为 和 ,这时 a = 1, b = –10 得 F[n] = 10F[n-1] – F[n-2]; (当然可以直接打表递推出关系式) 如果…
题目链接 题意 :给你m和k, 让你求f(k)%m.如果k<10,f(k) = k,否则 f(k) = a0 * f(k-1) + a1 * f(k-2) + a2 * f(k-3) + …… + a9 * f(k-10);思路 :先具体介绍一下矩阵快速幂吧,刚好刚刚整理了网上的资料.可以先了解一下这个是干嘛的,怎么用. 这个怎么弄出来的我就不说了,直接看链接吧,这实在不是我强项,点这儿,这儿也行 //HDU 1757 #include <iostream> #include <s…
链接:http://acm.hdu.edu.cn/showproblem.php?pid=2243 题意:给定N(1<= N < 6)个长度不超过5的词根,问长度不超过L(L <231)的单词中至少含有一个词根的单词个数:结果mod 264. 基础:poj 2778DNA 序列求的是给定长度不含模式串的合法串的个数:串长度相当,都到了int上界了: 1.mod 264直接使用unsigned long long自然溢出即可:说的有些含蓄..并且也容易想到是直接使用内置类型,要不然高精度的…
Recursive sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 249    Accepted Submission(s): 140 Problem Description Farmer John likes to play mathematics games with his N cows. Recently, t…
Problem Description Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time. Now we define that ‘f’ , then they are ff, mm,…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题,之前写过,见这里:http://blog.csdn.net/just_sort/article/details/73650284 然后推出前几项发现是有规律的,要问如何发现规律,不妨丢到std跑一跑... #include<bits/stdc++.h> using namespace std;…
Sequence  Accepts: 59  Submissions: 650  Time Limit: 2000/1000 MS (Java/Others)  Memory Limit: 65536/65536 K (Java/Others) Problem Description \ \ \ \    Holion August will eat every thing he has found. \ \ \ \    Now there are many foods,but he does…
题目链接 :http://acm.hdu.edu.cn/showproblem.php?pid=6030 Problem Description Little Q wants to buy a necklace for his girlfriend. Necklaces are single strings composed of multiple red and blue beads. Little Q desperately wants to impress his girlfriend,…
HDU - 1575 题目: A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973.  Input数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据.接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容. Output对应每组数据,输出Tr(A^k)%9973.Sample Input 2 2 2 1 0 0 1 3 99999999 1 2…
题 Description soda has a set $S$ with $n$ integers $\{1, 2, \dots, n\}$. A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets of $S$ are key set.   Input There are multiple test cases…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1097 分析:简单题,快速幂取模, 由于只要求输出最后一位,所以开始就可以直接mod10. /*A hard puzzle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 33036 Accepted Submission(s): 11821 Pr…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5950 Farmer John likes to play mathematics games with his N cows. Recently, they are attracted by recursive sequences. In each turn, the cows would stand in a line, while John writes two positive numbers…
题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Output 2 Hint 1. For N = 2, S(1) = S(2) = 1. 2. The input file consists of multiple test cases.   题意是输入一个N,求N被分成1个数的结果+被分成2个数的结果+...+被分成N个数的结果,N很大   1.隔板原…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10); 所求的是f(x)取m的模,而x,m,a[0]至a[9]都是输入项 初拿到这道题,最开始想的一般是暴力枚举,通过for循环求出f(x)然后再取模,但是有两个问题,首先f(x)可能特别大,其…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4767 题意:求集合{1, 2, 3, ..., n}有多少种划分情况bell[n],最后结果bell[n] mod 95041567. 分析:首先了解三个概念:贝尔数   第二类斯特灵数   中国剩余定理 贝尔数是指基数为n的集合的划分方法的数目. 贝尔数适合递推公式: 每个贝尔数都是"第二类Stirling数"的和 贝尔数满足两个公式:(p为质数)             1) B[n+…
How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 4838    Accepted Submission(s): 1900 Problem Description 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看…