一.Combiner的出现背景 1.1 回顾Map阶段五大步骤 在第四篇博文<初识MapReduce>中,我们认识了MapReduce的八大步凑,其中在Map阶段总共五个步骤,如下图所示: 其中,step1.5是一个可选步骤,它就是我们今天需要了解的 Map规约 阶段.现在,我们再来看看前一篇博文<计数器与自定义计数器>中的第一张关于计数器的图: 我们可以发现,其中有两个计数器:Combine output records和Combine input records,他们的计数都是…
1.概念 2.参考资料 提高hadoop的mapreduce job效率笔记之二(尽量的用Combiner) :http://sishuo(k).com/forum/blogPost/list/5829.html Hadoop学习笔记—8.Combiner与自定义Combiner:http://www.tuicool.com/articles/qAzUjav Hadoop深入学习:Combiner:http://blog.csdn.net/cnbird2008/article/details/2…
hadoop streaming同意我们使用不论什么可运行脚本来处理按行组织的数据流,数据取自UNIX的标准输入STDIN,并输出到STDOUT 我们能够用 linux命令管道查看文本有多少行,cat data.txt |wc -l 以下我们用streaming实现,先将文件放入hdfs,然后输出结果,streaming的包在contrib/streaming以下 通过设定mapper为'RandomSample.py 10',我们按十分之中的一个的採样率,没有设定特殊的reducer,一般默认…
1. Hadoop FS Shell Hadoop之所以可以实现分布式计算,主要的原因之一是因为其背后的分布式文件系统(HDFS).所以,对于Hadoop的文件操作需要有一套全新的shell指令来完成,而这就是Hadoop FS Shell.它主要是用于对Hadoop平台进行文件系统的管理. 有关HDFS的介绍博客请移步:Hadoop学习笔记之Hadoop基础. 有关Hadoop FS Shell的学习文档:Hadoop FS Shell学习文档. 2. Hadoop Streaming 我们知…
MapReduce编程模型 在Google的一篇重要的论文MapReduce: Simplified Data Processing on Large Clusters中提到,Google公司有大量的诸如Web请求日志.爬虫抓取的文档之类的数据需要处理,由于数据量巨大,只能将其分散在成百上千台机器上处理,如何处理并行计算.如何分发数据.如何处理错误,所有这些问题综合在一起,需要大量的代码处理,因此也使得原本简单的运算变得难以处理. 为了解决上述复杂的问题,Google设计一个新的抽象模型,使用这…
1. 查找历年最高的温度. MapReduce任务过程被分为两个处理阶段:map阶段和reduce阶段.每个阶段都以键/值对作为输入和输出,并由程序员选择它们的类型.程序员还需具体定义两个函数:map函数和reduce函数. 对应的Java MapReduce代码如下: public class MaxTemperature{ static class MaxTemperatureMapper extends Mapper<LongWritable,Text,Text,IntWritable>…
Hadoop学习笔记(7) ——高级编程 从前面的学习中,我们了解到了MapReduce整个过程需要经过以下几个步骤: 1.输入(input):将输入数据分成一个个split,并将split进一步拆成<key, value>. 2.映射(map):根据输入的<key, value>进生处理, 3.合并(combiner):合并中间相两同的key值. 4.分区(Partition):将<key, value>分成N分,分别送到下一环节. 5.化简(Reduce):将中间结…
Hadoop学习笔记(1) ——菜鸟入门 Hadoop是什么?先问一下百度吧: [百度百科]一个分布式系统基础架构,由Apache基金会所开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上:而且它提供高传输率(high throughput)来访问应用程序…
阿里封神谈hadoop学习之路   封神 2016-04-14 16:03:51 浏览3283 评论3 发表于: 阿里云E-MapReduce >> 开源大数据周刊 hadoop 学生 spark 摘要: 在大数据时代,要想个性化实现业务的需求,还是得操纵各类的大数据软件,如:hadoop.hive.spark等.笔者(阿里封神)混迹Hadoop圈子多年,经历了云梯1.ODPS等项目,目前base在E-Mapreduce.在这,笔者尽可能梳理下hadoop的学习之路. 引言 当前,越来越多的同…
Hadoop学习笔记(1) ——菜鸟入门 Hadoop是什么?先问一下百度吧: [百度百科]一个分布式系统基础架构,由Apache基金会所开发.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储. Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上:而且它提供高传输率(high throughput)来访问应用程序…
Hadoop学习笔记系列   一.为何要学习Hadoop? 这是一个信息爆炸的时代.经过数十年的积累,很多企业都聚集了大量的数据.这些数据也是企业的核心财富之一,怎样从累积的数据里寻找价值,变废为宝炼数成金成为当务之急.但数据增长的速度往往比cpu和内存性能增长的速度还要快得多.要处理海量数据,如果求助于昂贵的专用主机甚至超级计算机,成本无疑很高,有时即使是保存数据,也需要面对高成本的问题,因为具有海量数据容量的存储设备,价格往往也是天文数字.成本和IT能力成为了海量数据分析的主要瓶颈. Had…
本文基于Hadoop1.X 概述 分布式文件系统主要用来解决如下几个问题: 读写大文件 加速运算 对于某些体积巨大的文件,比如其大小超过了计算机文件系统所能存放的最大限制或者是其大小甚至超过了计算机整个硬盘的容量的文件,这时需要将文件分割为若干较小的块,然后将这些块按照一定的规则分放在集群中若干台节点计算机里. 分布式文件系统的另一个作用是加速运算,在多台计算机上对每个子文件进行计算最后再汇总结果通常比在一台计算机上处理大量文件的运算要块.这种分而治之的思想倡导:与其追求造价昂贵的高性能计算机,…
自从2015年花了2个多月时间把Hadoop1.x的学习教程学习了一遍,对Hadoop这个神奇的小象有了一个初步的了解,还对每次学习的内容进行了总结,也形成了我的一个博文系列<Hadoop学习笔记系列>.其实,早在2014年Hadoop2.x版本就已经开始流行了起来,并且已经成为了现在的主流.当然,还有一些非离线计算的框架如实时计算框架Storm,近实时计算框架Spark等等.相信了解Hadoop2.x的童鞋都应该知道2.x相较于1.x版本的更新应该不是一丁半点,最显著的体现在两点: (1)H…
一.HDFS出现的背景 随着社会的进步,需要处理数据量越来越多,在一个操作系统管辖的范围存不下了,那么就分配到更多的操作系统管理的磁盘中,但是却不方便管理和维护—>因此,迫切需要一种系统来管理多台机器上的文件,于是就产生了分布式文件管理系统,英文名成为DFS(Distributed File System). 那么,什么是分布式文件系统?简而言之,就是一种允许文件通过网络在多台主机上分享的文件系统,可以让多个机器上的多个用户分享文件和存储空间.它最大的特点是“通透性”,DFS让实际上是通过网络来…
Hadoop家族产品,常用的项目包括Hadoop, Hive, Pig, HBase, Sqoop, Mahout, Zookeeper, Avro, Ambari, Chukwa,新增加的项目包括,YARN, Hcatalog, Oozie, Cassandra, Hama, Whirr, Flume, Bigtop, Crunch, Hue等. 从2011年开始,中国进入大数据风起云涌的时代,以Hadoop为代表的家族软件,占据了大数据处理的广阔地盘.开源界及厂商,所有数据软件,无一不向Ha…
在Hadoop1(版本<=0.22)中,由于NameNode和JobTracker存在单点中,这制约了hadoop的发展,当集群规模超过2000台时,NameNode和JobTracker已经不堪重负.于是,全新架构的hadoop2(版本>=0.23)诞生了,可以支持分布式NameNode.NameNode HA(NameNode High Available),实现了NameNode的横向扩展,使得集群规模最大可支持上万个节点. 一.Hadoop2介绍 1.Hadoop1局限性  NameN…
Hadoop学习总结之五:Hadoop的运行痕迹   Hadoop 学习总结之一:HDFS简介 Hadoop学习总结之二:HDFS读写过程解析 Hadoop学习总结之三:Map-Reduce入门 Hadoop学习总结之四:Map-Reduce的过程解析 在使用hadoop的时候,可能遇到各种各样的问题,然而由于hadoop的运行机制比较复杂,因而出现了问题的时候比较难于发现问题. 本文欲通过某种方式跟踪Hadoop的运行痕迹,方便出现问题的时候可以通过这些痕迹来解决问题. 一.环境的搭建 为了能…
Hadoop学习笔记(6) ——重新认识Hadoop 之前,我们把hadoop从下载包部署到编写了helloworld,看到了结果.现是得开始稍微更深入地了解hadoop了. Hadoop包含了两大功能DFS和MapReduce, DFS可以理解为一个分布式文件系统,存储而已,所以这里暂时就不深入研究了,等后面读了其源码后,再来深入分析. 所以这里主要来研究一下MapReduce. 这样,我们先来看一下MapReduce的思想来源: alert("I'd like some Spaghetti!…
Hadoop学习笔记(2) ——解读Hello World 上一章中,我们把hadoop下载.安装.运行起来,最后还执行了一个Hello world程序,看到了结果.现在我们就来解读一下这个Hello Word. OK,我们先来看一下当时在命令行里输入的内容: $mkdir input $cd input $echo "hello world">test1.txt $echo "hello hadoop">test2.txt $cd .. $bin/ha…
Hadoop学习笔记(5) ——编写HelloWorld(2) 前面我们写了一个Hadoop程序,并让它跑起来了.但想想不对啊,Hadoop不是有两块功能么,DFS和MapReduce.没错,上一节我们写了一个MapReduce的HelloWorld程序,那这一节,我们就也学一学DFS程序的编写. DFS是什么,之前已经了解过,它是一个分布式文件存储系统.不管是远程或本地的文件系统,其实从接口上讲,应该是一至的,不然很难处理.同时在第2节的最后,我们列出了很多一些DFS的操作命令,仔细看一下,这…
Hadoop学习笔记(3) ——分布式环境搭建 前面,我们已经在单机上把Hadoop运行起来了,但我们知道Hadoop支持分布式的,而它的优点就是在分布上突出的,所以我们得搭个环境模拟一下. 在这里,我们采用这样的策略来模拟环境,我们使用3台ubuntu机器,1台为作主机(master),另外2台作为从机(slaver).同时,这台主机,我们就用第一章中搭建好的环境来. 我们采用与第一章中相似的步骤来操作: 运行环境搭建 在前面,我们知道,运行hadoop是在linux上运行的.所以我们单机就在…
Hadoop学习笔记(2) ——解读Hello World 上一章中,我们把hadoop下载.安装.运行起来,最后还执行了一个Hello world程序,看到了结果.现在我们就来解读一下这个Hello Word. OK,我们先来看一下当时在命令行里输入的内容: $mkdir input $cd input $echo "hello world">test1.txt $echo "hello hadoop">test2.txt $cd .. $bin/ha…
1.漫画HDFS工作原理  http://blog.csdn.net/netcoder/article/details/7442779 2.马哥教育 http://mageedu.blog.51cto.com/ 3.细细品味Hadoop http://www.cnblogs.com/xia520pi/category/346943.html 4.Hadoop-0.20.0源代码分析 http://blog.csdn.net/shirdrn/article/category/595039/3 5.…
本文描写叙述怎样设置一个单一节点的 Hadoop 安装.以便您能够高速运行简单的操作,使用 Hadoop MapReduce 和 Hadoop 分布式文件系统 (HDFS). 參考官方文档:Hadoop MapReduce Next Generation - Setting up a Single Node Cluster. Hadoop版本号:Apache Hadoop 2.5.1 系统版本号:CentOS 6.5.内核(uname -r):2.6.32-431.el6.x86_64 系统必备…
SSH无密码配置 Hadoop在Ubuntu12.04上搭建环境 报错及问题 SSH无密码配置 参考:Linux(Centos)配置OpenSSH无密码登陆 注意问题: Hadoop集成环境三台机器都要配置无密码环境,互相要可以ssh通.如果你想用主机名称来连接ssh的话要注意: 在每台机器(共三台)的 /etc/hosts 这个文件中的IP和主机各要对应,如下: 主机IP 主机名 192.168.139.134 master 192.168.139.136 slaver 192.168.139…
转载自http://www.cnblogs.com/edisonchou/p/4288737.html Hadoop学习笔记—5.自定义类型处理手机上网日志 一.测试数据:手机上网日志 1.1 关于这个日志 假设我们如下一个日志文件,这个文件的内容是来自某个电信运营商的手机上网日志,文件的内容已经经过了优化,格式比较规整,便于学习研究. 该文件的内容如下(这里我只截取了三行): 1363157993044 18211575961 94-71-AC-CD-E6-18:CMCC-EASY 120.1…
关于大数据,一看就懂,一懂就懵. 一.概述 本文介绍如何搭建hadoop分布式集群环境,前面文章已经介绍了如何搭建hadoop单机环境和伪分布式环境,如需要,请参看:大数据Hadoop学习之搭建hadoop平台(2.1).hadoop独立环境和伪分布式环境都无法发挥hadoop的价值,若想利用hadoop进行一些有价值的工作,必须搭建hadoop分布式集群环境. 下文以三台虚拟机为基础搭建集群环境,系统版本为CentOS-7,虚拟机地址分别为:192.168.1.106.192.168.1.10…
要想发挥Hadoop分布式.并行处理的优势,还须以分布式模式来部署运行Hadoop.单机模式是指Hadoop在单个节点上以单个进程的方式运行,伪分布模式是指在单个节点上运行NameNode.DataNode.JobTracker.TaskTracker.SeconderyNameNode5个进程,而分布式模式是指在不同节点上分别运行上述5个进程中的某几个,比如在某个节点上运行DataNode和TaskTracker. 前面几步和单机部署一样,可以参照Hadoop学习------Hadoop安装方…
Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上. Hadoop的框架最核心的设计就是:HDFS和MapReduce.HDFS为海量的数据提供了存储,则MapReduce为海量的数据提供了计算. Hadoop原本来自于谷歌一款名为MapReduce的编程模型包.谷歌的MapReduce框架可以把一个应用程序分解为许多并行计算指令,跨大量的计算节点运行非常…
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-3.1.1 由于NameNode对于整个HDFS集群重要性,为避免NameNode单点故障,在集群里创建2个或以上NameNode(不要超过5个),保证高可用. 实现主备NameNode需要解决的问题:1.通过JournalNodes来保证Active NN与Standby NN之间的元数据同步 2.通过ZKFC来保证Active NN与Sta…