predict_proba 的使用】的更多相关文章

predict_proba返回的是一个n行k列的数组,第i行第j列上的数值是模型预测第i个预测样本的标签为j的概率.所以每一行的和应该等于1. 举个例子 >>> from sklearn.linear_model import LogisticRegression >>> import numpy as np >>> x_train = np.array([[1,2,3], [1,3,4], [2,1,2], [4,5,6], [3,5,3], [1,…
1.lr.predict_proba(under_text_x)  获得的是正负的概率值 在sklearn逻辑回归的计算过程中,使用的是大于0.5的是正值,小于0.5的是负值,我们使用使用不同的概率结果判定来研究概率阈值对结果的影响 从图中我们可以看出,阈值越小,被判为正的越多,即大于阈值的就是为正,但是存在一个很明显的问题就是很多负的也被判为正值. 当阈值很小时,数据的召回率很大,但是整体数据的准确率很小 因此我们需要根据召回率和准确率的综合考虑选择一个合适的阈值 lr = LogisticR…
假定在一个k分类问题中,测试集中共有n个样本.则: predict返回的是一个大小为n的一维数组,一维数组中的第i个值为模型预测第i个预测样本的标签: predict_proba返回的是一个n行k列的数组,第i行第j列上的数值是模型预测第i个预测样本的标签为j的概率.此 时每一行的和应该等于1. 举个例子: >>> from sklearn.linear_model import LogisticRegression >>> import numpy as np >…
predict_proba返回的是一个 n 行 k 列的数组, 第 i 行 第 j 列上的数值是模型预测 第 i 个预测样本为某个标签的概率,并且每一行的概率和为1. # conding :utf-8 from sklearn.linear_model import LogisticRegression import numpy as np x_train = np.array([[1,2,3], [1,3,4], [2,1,2], [4,5,6], [3,5,3], [1,7,2]]) y_t…
predict是训练后返回预测结果,是标签值. predict_proba返回的是一个 n 行 k 列的数组, 第 i 行 第 j 列上的数值是模型预测 第 i 个预测样本为某个标签的概率,并且每一行的概率和为1.# conding :utf-8 from sklearn.linear_model import LogisticRegression  import numpy as np  x_train = np.array([[1,2,3],                      [1,…
predict_proba返回的是一个n行k列的数组,第i行第j列上的数值是模型预测第i个预测样本的标签为j的概率.所以每一行的和应该等于1. 举个例子 >>> from sklearn.linear_model import LogisticRegression >>> import numpy as np >>> x_train = np.array([[1,2,3], [1,3,4], [2,1,2], [4,5,6], [3,5,3], [1,…
在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注意事项,以及和GBDT调参的异同点. 1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor.当然RF的变种Extra Trees也有, 分类类ExtraTreesC…
在梯度提升树(GBDT)原理小结中,我们对GBDT的原理做了总结,本文我们就从scikit-learn里GBDT的类库使用方法作一个总结,主要会关注调参中的一些要点. 1. scikit-learn GBDT类库概述 在sacikit-learn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegressor为GBDT的回归类.两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相同.这些参数中,类似于Adabo…
在集成学习之Adaboost算法原理小结中,我们对Adaboost的算法原理做了一个总结.这里我们就从实用的角度对scikit-learn中Adaboost类库的使用做一个小结,重点对调参的注意事项做一个总结. 1. Adaboost类库概述 scikit-learn中Adaboost类库比较直接,就是AdaBoostClassifier和AdaBoostRegressor两个,从名字就可以看出AdaBoostClassifier用于分类,AdaBoostRegressor用于回归. AdaBo…