【刷题】BZOJ 2693 jzptab】的更多相关文章

BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能同时被a和b整除的最小正整数.例如,LCM(6, 8) = 24.回到家后,Crash还在想着课上学的东西,为了研究最小公倍数,他画了一张N*M的表格.每个格子里写了一个数字,其中第i行第j列的那个格子里写着数为LCM(i, j).一个4*5的表格如下: 1 2 3 4 5 2 2 6 4…
题目描述 TTT组数据,给出NNN,MMM,求∑x=1N∑y=1Mlim(x,y)\sum_{x=1}^N\sum_{y=1}^M lim(x,y)\newlinex=1∑N​y=1∑M​lim(x,y) N,M<=10000000T<=10000N,M <= 10000000\newline T<= 10000N,M<=10000000T<=10000 题目分析 直接开始变换,假设N<M Ans=∑x=1N∑y=1Mxy(x,y)=∑T=1N1T∑x=1N∑y=…
2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1194  Solved: 455[Submit][Status][Discuss] Description Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample Input 1 4 5 Sample Output 122 HINT T <= 10000 N, M<=1000000…
2693: jzptab Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 444  Solved: 174[Submit][Status][Discuss] Description   Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample Input 1 4 5 Sample Output 122 HINT T <= 10000 N, M<=100000…
速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u(d)*d (d | x) 然后就是分块了... ------------------------------------------------------------------- #include<bits/stdc++.h>   using namespace std;   typedef…
Description Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample Input 1 4 5 Sample Output 122 HINT T <= 10000 N, M<=10000000 Solution 这题就是上一题(BZOJ2154)的升级版 我们接着推 \[ans=\sum_{d=1}^Nd\cdot \sum_{i=1}^{N}\mu(i)\cdot i^2\cdot s(\lf…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题解: 莫比乌斯反演 先看看这个题,BZOJ 2154 Crash的数字表格,本题的升级版:改为了多组数据. 既然是多组数据,那么之前的$O(N)$的方法就不行了. 现在需要对求ANS的式子进行优化,看看能不能降低复杂度. $ANS=\sum_{g=1}^{min(n,m)}g\times \sum_{d=1}^{min(\lfloor \frac{n}{g} \rfloor,\lf…
http://www.lydsy.com/JudgeOnline/problem.php?id=2693 题解: 考虑把lcm转化成gcd那答案就是然后神奇的设:就有:一样可以枚举 的取值,这是O(√n)的: 然后求f(x,y): 大概证明了一下= = 线性筛之后也可以O(√n)求出f(x,y)总复杂度O(n),常数略大.. 这题显然是卡O(n)过不了呗那就还得优化 预处理这玩意 然后O(√n)就搞出来啦! 设“积性函数的约数和也是积性函数”  ->好像比较显然?所以g(D)是积性函数线性筛裸上…
同BZOJ 2154 但是需要优化 $ans=\sum_{d<=n}d*\sum_{i<=\lfloor n/d \rfloor} i^2 *\mu(i)* Sum(\lfloor \frac {n}{i*d} \rfloor,\lfloor \frac {m}{i*d} \rfloor)$ 如果我们设$T=i*d$ $ans=\sum_{T<=n} Sum(\lfloor \frac {n}{T}\rfloor,\lfloor \frac {m}{T}\rfloor)\sum_{i \…
Code: #include<bits/stdc++.h> #define ll long long #define M 10001000 #define maxn 10200100 #define MOD 100000009 using namespace std; int cnt, tot; int vis[maxn],mu[maxn], prime[maxn]; ll h[maxn], sumv[maxn]; void init() { int i,j; h[1]=1; for(i=2;…