pytorch hook使用】的更多相关文章

  PyTorch Hook¶ 为什么要引入hook? -> hook可以做什么? 都有哪些hook? 如何使用hook?   1. 为什么引入hook?¶ 参考:Pytorch中autograd以及hook函数详解 在pytorch中的自动求梯度机制(Autograd mechanics)中,如果将tensor的requires_grad设为True, 那么涉及到它的一系列运算将在反向传播中自动求梯度. In [0]: x = torch.randn(5, 5) # requires_grad…
pytorch hook学习 register_hook import torch x = torch.Tensor([0,1,2,3]).requires_grad_() y = torch.Tensor([4,5,6,7]).requires_grad_() w = torch.Tensor([1,2,3,4]).requires_grad_() z = x+y; o = w.matmul(z) # o = w(x+y) 中间变量z o.backward() print(x.grad,y.g…
由于pytorch会自动舍弃图计算的中间结果,所以想要获取这些数值就需要使用钩子函数. 钩子函数包括Variable的钩子和nn.Module钩子,用法相似. import torch from torch.autograd import Variable grad_list = [] grad_listx = [] def print_grad(grad): grad_list.append(grad) def print_gradx(grad): grad_listx.append(grad…
参考:1. pytorch学习笔记(九):PyTorch结构介绍 2.pytorch学习笔记(七):pytorch hook 和 关于pytorch backward过程的理解 3.Pytorch入门学习(三):Neural Networks 4.forward 神经网络的典型处理如下所示: 1. 定义可学习参数的网络结构(堆叠各层和层的设计):2. 数据集输入:3. 对输入进行处理(由定义的网络层进行处理),主要体现在网络的前向传播:4. 计算loss ,由Loss层计算:5. 反向传播求梯度…
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson5/hook_fmap_vis.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson5/hook_methods.py https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson5/weight_fma…
torch.nn Parameters class torch.nn.Parameter() 艾伯特(http://www.aibbt.com/)国内第一家人工智能门户,微信公众号:aibbtcom Variable的一种,常被用于模块参数(module parameter). Parameters 是 Variable 的子类.Paramenters和Modules一起使用的时候会有一些特殊的属性,即:当Paramenters赋值给Module的属性的时候,他会自动的被加到 Module的 参…
参考深度学习框架pytorch:入门和实践一书第六章 以深度学习框架PyTorch一书的学习-第六章-实战指南为前提 在pytorch中Debug pytorch作为一个动态图框架,与ipdb结合能为调试过程带来便捷 对tensorflow等静态图来说,使用python接口定义计算图,然后使用c++代码执行底层运算,在定义图的时候不进行任何计算,而在计算的时候又无法使用pdb进行调试,因为pdb调试只能挑事python代码,故调试一直是此类静态图框架的一个痛点 与tensorflow不同,pyt…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 本章介绍的nn模块是构建与autograd之上的神经网络模块 除了nn外还会介绍神经网络中常用的工具,比如优化器optim.初始化init等 1.nn.Module torch的核心数据结构是Module,它是一个抽象的概念,既可以表示神经网络中的某个层,也可以表示一个包含很多层的神经网络 在实际使用中,最常见的做法是继承nn.Modu…
参考https://github.com/chenyuntc/pytorch-book/tree/v1.0 希望大家直接到上面的网址去查看代码,下面是本人的笔记 torch.autograd就是为了方便用户使用,专门开发的一套自动求导引擎,她能够根据输入和前向传播过程自动构建计算图,并执行反向传播 1.Variable 深度学习算法的本质是通过反向函数求导数,pytorch的Autograd模块实现了此功能.在Tensor上的所有操作,Autograd都能够为他们自动提供微分,避免手动计算的复杂…
『TensorFlow』读书笔记_ResNet_V2 对比之前的复杂版本,这次的torch实现其实简单了不少,不过这和上面的代码实现逻辑过于复杂也有关系. 一.PyTorch实现 # Author : hellcat # Time : 18-3-2 """ import os os.environ["CUDA_VISIBLE_DEVICES"]="-1" import numpy as np np.set_printoptions(th…
在PyTorch中计算图的特点可总结如下: autograd根据用户对variable的操作构建其计算图.对变量的操作抽象为Function. 对于那些不是任何函数(Function)的输出,由用户创建的节点称为叶子节点,叶子节点的grad_fn为None.叶子节点中需要求导的variable,具有AccumulateGrad标识,因其梯度是累加的. variable默认是不需要求导的,即requires_grad属性默认为False,如果某一个节点requires_grad被设置为True,那…
代码地址:https://github.com/jwyang/faster-rcnn.pytorch 1.fasterRCNN.train():这个不是让网络进行训练,而是让module in training mode,有些module在traing model和testing model下不同,比如bn 即self.training这个成员变量为true(这个成员变量属于nn.Module,fasterRCNN继承了这个成员变量),以下是train成员函数的源码 2.bn的train和tes…
1. 0.4中使用设备:.to(device) 2. 0.4中删除了Variable,直接tensor就可以 3. with torch.no_grad():的使用代替volatile:弃用volatile,测试中不需要计算梯度的话,用with torch.no_grad(): 4. data改用.detach:x.detach()返回一个requires_grad=False的共享数据的Tensor,并且,如果反向传播中需要x,那么x.detach返回的Tensor的变动会被autograd追…
由于pytorch会自动舍弃图计算的中间结果,所以想要获取这些数值就需要使用钩子函数. 钩子函数包括Variable的钩子和nn.Module钩子,用法相似. 一.register_hook import torch from torch.autograd import Variable grad_list = [] def print_grad(grad): grad_list.append(grad) x = Variable(torch.randn(2, 1), requires_grad…
查看非叶节点梯度的两种方法 在反向传播过程中非叶子节点的导数计算完之后即被清空.若想查看这些变量的梯度,有两种方法: 使用autograd.grad函数 使用hook autograd.grad和hook方法都是很强大的工具,更详细的用法参考官方api文档,这里举例说明基础的使用.推荐使用hook方法,但是在实际使用中应尽量避免修改grad的值. 求z对y的导数 x = V(t.ones(3)) w = V(t.rand(3),requires_grad=True) y = w.mul(x) z…
在 Pytorch 中一种模型保存和加载的方式如下: # save torch.save(model.state_dict(), PATH) # load model = MyModel(*args, **kwargs) model.load_state_dict(torch.load(PATH)) model.eval() model.state_dict()其实返回的是一个OrderDict,存储了网络结构的名字和对应的参数,下面看看源代码如何实现的. state_dict # torch.…
pytorch 为了节省显存,在反向传播的过程中只针对计算图中的叶子结点(leaf variable)保留了梯度值(gradient).但对于开发者来说,有时我们希望探测某些中间变量(intermediate variable) 的梯度来验证我们的实现是否有误,这个过程就需要用到 tensor的register_hook接口.一段简单的示例代码如下,代码主要来自pytorch开发者的回答,笔者稍作修改使其更符合最新版的pytorch 语法(v1.2.0). grads = {} def save…
输入数据PipeLine pytorch 的数据加载到模型的操作顺序是这样的: ①创建一个 Dataset 对象②创建一个 DataLoader 对象③循环这个 DataLoader 对象,将img, label加载到模型中进行训练 dataset = MyDataset() dataloader = DataLoader(dataset) num_epoches = 100 for epoch in range(num_epoches): for img, label in dataloade…
参考:https://pytorch.org/docs/stable/nn.html Containers Module CLASS torch.nn.Module 所有神经网络模块的基类 你定义的模型必须是该类的子类,即继承与该类 模块也能包含其他模块,允许它们在树状结构中筑巢.您可以将子模块指定为常规属性: import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(se…
转载:https://zhuanlan.zhihu.com/p/53927068 https://blog.csdn.net/wangdongwei0/article/details/88956527 pytorch最后的权重文件是.pth格式的. 经常遇到的问题: 进行finutune时,改配置文件中的学习率,发现程序跑起来后竟然保持了以前的学习率, 并没有使用新的学习率. 原因: 首先查看.pth文件中的内容,我们发现它其实是一个字典格式的文件: 其中保存了optimizer和schedul…
尝试使用了pytorch,相比其他深度学习框架,pytorch显得简洁易懂.花时间读了部分源码,主要结合简单例子带着问题阅读,不涉及源码中C拓展库的实现. 一个简单例子 实现单层softmax二分类,输入特征维度为4,输出为2,经过softmax函数得出输入的类别概率.代码示意:定义网络结构:使用SGD优化:迭代一次,随机初始化三个样例,每个样例四维特征,target分别为1,0,1:前向传播,使用交叉熵计算loss:反向传播,最后由优化算法更新权重,完成一次迭代.   import torch…
PyTorch结构介绍对PyTorch架构的粗浅理解,不能保证完全正确,但是希望可以从更高层次上对PyTorch上有个整体把握.水平有限,如有错误,欢迎指错,谢谢! 几个重要的类型和数值相关的TensorVariableParameterbuffer(这个其实不能叫做类型,其实他就是用来保存tensor的)Tensor: PyTorch中的计算基本都是基于Tensor的,可以说是PyTorch中的基本计算单元. Variable: Tensor的一个Wrapper,其中保存了Variable的创…
Module 是 pytorch 提供的一个基类,每次我们要 搭建 自己的神经网络的时候都要继承这个类,继承这个类会使得我们 搭建网络的过程变得异常简单. 本文主要关注 Module 类的内部是怎么样的. 初始化方法中做了什么def __init__(self): self._backend = thnn_backend self._parameters = OrderedDict() self._buffers = OrderedDict() self._backward_hooks = Or…
前言 申请的专栏开通了,刚好最近闲下来了,就打算开这个坑了hhhhh 第一篇就先讲一讲pytorch的运行机制好了... 记得当时刚刚接触的时候一直搞不明白,为什么自己只是定义了几个网络,就可以完整的训练整个模型,它背后的机制又是如何,搞明白了这个,才有可能去做更多的定制的更改,比如更改loss,反传方式,梯度下降机制,甚至自定义参数更新速率(比如学习率随着迭代轮数下降),文章比较浅显,希望各位大神不吝赐教. 知识储备 看此文章的前提,大概需要你写过一个利用pytorch的训练程序,哪怕官网上的…
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson3/module_containers.py 这篇文章来看下 PyTorch 中网络模型的创建步骤.网络模型的内容如下,包括模型创建和权值初始化,这些内容都在nn.Module中有实现. 网络模型的创建步骤 创建模型有 2 个要素:构建子模块和拼接子模块.如 LeNet 里包含很多卷积层.池化层.全连接层,当我们构建好所有的子模块之后,按照一定的顺序拼接起来…
1. 什么是Hook 经常会听到钩子函数(hook function)这个概念,最近在看目标检测开源框架mmdetection,里面也出现大量Hook的编程方式,那到底什么是hook?hook的作用是什么? what is hook ?钩子hook,顾名思义,可以理解是一个挂钩,作用是有需要的时候挂一个东西上去.具体的解释是:钩子函数是把我们自己实现的hook函数在某一时刻挂接到目标挂载点上. hook函数的作用 举个例子,hook的概念在windows桌面软件开发很常见,特别是各种事件触发的机…
nn.Module 函数详解 nn.Module是所有网络模型结构的基类,无论是pytorch自带的模型,还是要自定义模型,都需要继承这个类.这个模块包含了很多子模块,如下所示,_parameters存放的是模型的参数,_buffers也存放的是模型的参数,但是是那些不需要更新的参数.带hook的都是钩子函数,详见钩子函数部分. self._parameters = OrderedDict() self._buffers = OrderedDict() self._non_persistent_…
[源码解析]PyTorch如何实现前向传播(1) --- 基础类(上) 目录 [源码解析]PyTorch如何实现前向传播(1) --- 基础类(上) 0x00 摘要 0x01 总体逻辑 0x02 废弃类 2.1 Variable 2.2 Function 0x03 Tensor 3.1 定义 in python 3.2 查找定义 3.2.1 Tensor 3.2.2 _TensorBase 3.3 转换 3.3.1 Python 导入 3.3.2 C++ 导出 & 初始化 3.3.2.1 共享库…
[源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构 目录 [源码解析] Pytorch 如何实现后向传播 (2)---- 引擎静态结构 0x00 摘要 0x01 Engine 0x02 GraphRoot 2.1 构建 2.2 作用 0x03 GraphTask 3.1 定义 3.2 outstanding_tasks_ 3.2.1 任务结束 3.2.2 增加 3.2.3 递减 3.3 keep_graph 3.4 dependencies_ 3.5 not_ready…
[源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法 目录 [源码解析] PyTorch 如何实现后向传播 (4)---- 具体算法 0x00 摘要 0x01 工作线程主体 1.1 线程主体代码 1.2 使用 Ready Queue 0x02 反向计算总体逻辑 0x03 准备工作 0x04 核心逻辑 0x05 准备下一步工作 5.1 依据依赖排查节点 5.2 处理这个节点 0x06 扫尾操作 6.1 判断结束 6.2 后续&通知 6.2.1 后续操作 6.2.2 通知主线程…