NTT+多项式求逆】的更多相关文章

题目描述 求出n个点的简单(无重边无自环)无向连通图数目mod 1004535809(479 * 2 ^ 21 + 1). 输入 仅一行一个整数n(<=130000) 输出 仅一行一个整数, 为方案数 mod 1004535809. 样例输入 3 样例输出 4 题解 容斥原理+NTT+多项式求逆 设 $f_i$ 表示 $i$ 个点的简单无向连通图的数目,$g_i$ 表示 $i$ 个点的简单无向图的数目. 根据定义得 $g_i=2^{\frac{n(n-1}2}$ . 对于 $f_i$ ,考虑容斥…
定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\frac{2}{\sqrt{1-4h(x)}+1}$ 于是我们需要多项式开方和多项式求逆. 多项式求逆: 求$B(x)$,使得$A(x)*B(x)=1\;(mod\;x^m)$ 考虑倍增. 假设我们已知$A(x)*B(x)=1\;(mod\;x^m)$,要求$C(x)$,使得$A(x)*C(x)=1\;…
第一眼生成函数.四个等比数列形式的多项式相乘,可以化成四个分式.其中分母部分是固定的,可以多项式求逆预处理出来.而分子部分由于项数很少,询问时2^4算一下贡献就好了.这个思路比较直观.只是常数巨大,以及需要敲一发类似任意模数ntt的东西来避免爆精度.成功以这种做法拿下luogu倒数rank1,至于bzoj不指望能过了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib>…
3456: 城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 658  Solved: 364 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得整个国家的任意两个城市都直接或间接的连通. 为了省钱, 每两个城市之间最多只能有一条直接的贸易路径. 对于两个建立路线的方案, 如果存在一个城市对, 在两个方案中是否建立路线不一…
不想多说了,看网上的题解吧,我大概说下思路. 首先考察Stirling的意义,然后求出递推式,变成卷积的形式. 然后发现贡献是一定的,我们可以分治+NTT. 也可以直接求逆(我不会啊啊啊啊啊) #include <map> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <alg…
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3456 题意: 求出\(n\)个点的简单(无重边无自环)无向连通图的个数.(\(n<=130000\)). 并且输出方案数mod \(1004535809(479 * 2 ^ {21} + 1)\). 题解: 这题是POJ 1737的加强版. 从之前写过的题解中: POJ 1737 Connected Graph 我们知道存在这样的递推式: \[f[n]=2^{C(n,2)}-\sum…
写在前面的话 昨天听吕老板讲课,数数题感觉十分的神仙. 于是,ErkkiErkko这个小蒟蒻也要去学数数题了. 分析 Miskcoo orz 带标号无向连通图计数. \(f(x)\)表示\(x\)个点的带标号无向连通图的个数.弱化限制条件,令\(g(x)\)表示\(x\)个点的带标号无向图的个数(不要求连通). 考虑每条边是否出现,显然有: \[g(x)=2^{\binom{x}{2}}\] 考虑编号为\(1\)的结点所在连通块的大小,有: \[g(x)=\sum_{i=1}^{x}\binom…
正题 题目链接:https://www.luogu.com.cn/problem/P4233 题目大意 随机选择一条有哈密顿回路的\(n\)个点的竞赛图,求选出图的哈密顿回路的期望个数. 对于每个\(n\in[1,N]\)求答案. \(1\leq N\leq 10^5\) 解题思路 竟然自己推出来了泪目( Ĭ ^ Ĭ ) 如果是统计所以的哈密顿回路个数是一个很简单的题目,我们可以求出\(n\)的一个圆排列表示一条回路,然后剩下的边随便排即可.也就是\((n-1)!\times 2^{\frac{…
生成函数又有奇妙的性质. $F(x)=C(x)*F(x)*F(x)+1$ 然后大力解方程,得到一个带根号的式子. 多项式开根有解只与常数项有关. 发现两个解只有一个是成立的. 然后多项式开根.求逆. 不太会算复杂度为什么是$n\log {n}$的. 开根号里套了一个求逆,不应该是两个$\log$? #include <map> #include <cmath> #include <queue> #include <cstdio> #include <c…
Code: #include<bits/stdc++.h> #define maxn 300000 #define ll long long #define MOD 998244353 #define setIO(s) freopen(s".in","r",stdin) ,freopen(s".out","w",stdout) using namespace std; namespace poly{ #define…