Pytorch数据读取框架】的更多相关文章

训练一个模型需要有一个数据库,一个网络,一个优化函数.数据读取是训练的第一步,以下是pytorch数据输入框架. 1)实例化一个数据库 假设我们已经定义了一个FaceLandmarksDataset数据库,此数据库将在以下建立. import FaceLandmarksDataset face_dataset = FaceLandmarksDataset(csv_file='data/faces/face_landmarks.csv', root_dir='data/faces/', trans…
原文:https://likewind.top/2019/02/01/Pytorch-dataprocess/ Pytorch系列: PyTorch系列(一) - PyTorch使用总览 PyTorch系列(二) - PyTorch数据读取 PyTorch系列(三) - PyTorch网络构建 PyTorch系列(四) - PyTorch网络设置 参考: PyTorch documentation PyTorch 码源 本文首先介绍了有关预处理包的源码,接着介绍了在数据处理中的具体应用: 其主要…
在炼丹时,数据的读取与预处理是关键一步.不同的模型所需要的数据以及预处理方式各不相同,如果每个轮子都我们自己写的话,是很浪费时间和精力的.Pytorch帮我们实现了方便的数据读取与预处理方法,下面记录两个DEMO,便于加快以后的代码效率. 根据数据是否一次性读取完,将DEMO分为: 1.串行式读取.也就是一次性读取完所有需要的数据到内存,模型训练时不会再访问外存.通常用在内存足够的情况下使用,速度更快. 2.并行式读取.也就是边训练边读取数据.通常用在内存不够的情况下使用,会占用计算资源,如果分…
原文:http://studyai.com/article/11efc2bf#%E9%87%87%E6%A0%B7%E5%99%A8%20Sampler%20&%20BatchSampler 数据库DataBase + 数据集DataSet + 采样器Sampler = 加载器Loader from torch.utils.data import * IMDB + Dataset + Sampler || BatchSampler = DataLoader 数据库 DataBase Image…
整理一下看到的自定义数据读取的方法,较好的有一下三篇文章, 其实自定义的方法就是把现有数据集的train和test分别用 含有图像路径与label的list返回就好了,所以需要根据数据集随机应变. 所有图片都在一个文件夹1 之前刚开始用的时候,写Dataloader遇到不少坑.网上有一些教程 分为all images in one folder 和 each class one folder.后面的那种写的人比较多,我写一下前面的这种,程式化的东西,每次不同的任务改几个参数就好. 等训练的时候写…
​  前言  本文介绍了classdataset的几个要点,由哪些部分组成,每个部分需要完成哪些事情,如何进行数据增强,如何实现自己设计的数据增强.然后,介绍了分布式训练的数据加载方式,数据读取的整个流程,当面对超大数据集时,内存不足的改进思路. 本文延续了以往的写作态度和风格,即便是自己知道的内容,也仍然在写之前看了很多的文章来保证内容的正确性和全面性,因此写得极累,耗费时间较长.若有读者看完后觉得有所帮助,文末可以赞赏一点. 文末扫描二维码关注公众号CV技术指南 ,专注于计算机视觉的技术总结…
在上篇博客(geotrellis使用初探)中简单介绍了geotrellis-chatta-demo的大致工作流程,但是有一个重要的问题就是此demo如何调取数据进行瓦片切割分析处理等并未说明,经过几天的调试.分析.源代码研读终于大致搞明白了其数据调取方式,下面简单介绍. 经过调试发现系统第一次调用数据的过程就是系统启动的时候调用了initCache方法,明显可以看出此方法是进行了数据缓存,那必然牵扯到数据的调取,整个过程清晰明了,只新建了一个RasterSource类,并调用了相关方法.明显数据…
之前,对SSD的论文进行了解读,可以回顾之前的博客:https://www.cnblogs.com/dengshunge/p/11665929.html. 为了加深对SSD的理解,因此对SSD的源码进行了复现,主要参考的github项目是ssd.pytorch. 搭建SSD的项目,可以分成以下三个部分: 数据读取: 网络搭建: 损失函数的构建: 网络测试. 接下来,本篇博客重点分析数据读取. 一.整体框架 SSD的数据读取环节,同样适用于大部分目标检测的环节,具有通用性.为了方便理解,本项目以V…
Deft 简介 Deft是一个超轻量级高性能O/R mapping数据访问框架,简单易用,几分钟即可上手. Deft包含如下但不限于此的特点: 1.按照Transact-SQL的语法语义风格来设计,只要调用者熟悉基本的Transact-SQL语法即可瞬间无忧开码,大大降低了学习Deft的成本,甚至零成本.2.性能十分不错(个人觉得易用性很重要,只要性能不拖后腿就好了),通过缓存+Emit反射IDataReader,极速获取List<T>.3.强大的查询功能,支持使用Lambda表达式任意组装w…
深度神经网络(Deep Neural Networks, 简称DNN)是近年来机器学习领域中的研究热点,产生了广泛的应用.DNN具有深层结构.数千万参数需要学习,导致训练非常耗时.GPU有强大的计算能力,适合于加速深度神经网络训练.DNN的单机多GPU数据并行框架是腾讯深度学习平台的一部分,腾讯深度学习平台技术团队实现了数据并行技术加速DNN训练,提供公用算法简化实验过程.对微信语音识别应用,在模型收敛速度和模型性能上都取得了有效提升——相比单GPU 4.6倍加速比,数十亿样本的训练数天收敛,测…