洛谷P2619 Tree I】的更多相关文章

经典的k条白边MST 带权二分,按照套路我们要选择尽量少的白边. #include <cstdio> #include <algorithm> ; int D; struct Edge { int x, y, val, col; inline bool operator <(const Edge &w) const { if(val - D * col == w.val - D * w.col) { return col < w.col; } return va…
洛谷题目传送门 给一个比较有逼格的名词--WQS二分/带权二分/DP凸优化(当然这题不是DP). 用来解决一种特定类型的问题: 有\(n\)个物品,选择每一个都会有相应的权值,需要求出强制选\(need\)个物品时的最大/最小权值和. 一般来说,我们求不限制个数的最大/最小权值和很容易,但在限制个数的前提下再求最值会变得有点困难.比较低效的做法是对状态再加设一个维度表示已选物品数量,然后通过DP等方法求出. 应用前提:设\(g_x\)为强制选\(x\)个物品的最大/最小权值和,如果所有的点对\(…
推荐YCB的总结 推荐你谷ysn等巨佬的详细题解 大致流程-- dfs求出当前树的重心 对当前树内经过重心的路径统计答案(一条路径由两条由重心到其它点的子路径合并而成) 容斥减去不合法情况(两条子路径在重心的子树内就已经相交) 删除重心(打上永久标记),对子树继续处理,转1 求重心是板子,算答案的方法要依题而定,一般都要容斥. 模板题洛谷传送门 calc函数中,头尾两个指针扫的计数方法也是一种套路 因为要sort,所以复杂度\(O(n\log^2n)\),不过蒟蒻实测你谷数据\(k\)不超过\(…
题面 有多组数据:Poj 无多组数据:洛谷 题解 点分治板子题,\(calc\)的时候搞一个\(two\ pointers\)扫一下统计答案就行了. #include <cmath> #include <cstdio> #include <cstring> #include <algorithm> using std::min; using std::max; using std::swap; using std::sort; typedef long lo…
题目描述 给你一个无向带权连通图,每条边是黑色或白色.让你求一棵最小权的恰好有\(need\)条白色边的生成树. 题目保证有解. 输入输出格式 输入格式 第一行\(V,E,need\)分别表示点数,边数和需要的白色边数. 接下来\(E\)行 每行\(s,t,c,col\)表示这边的端点(点从\(0\)开始标号),边权,颜色(\(0\)白色\(1\)黑色). 输出格式 一行表示所求生成树的边权和. 输入输出样例 输入样例#1 2 2 1 0 1 1 1 0 1 2 0 输出样例#1 2 说明 \(…
\(\mathcal{Description}\)   Link.   给一个 \(n\) 个点 \(m\) 条边的带权无向图,边有权值和黑白颜色,求恰选出 \(K\) 条白边构成的最小生成树.   \(n\le5\times10^4\),\(m\le10^5\). \(\mathcal{Solution}\)   沉迷造题,好久没写题解了 qwq.   本题是 WQS 二分的板题.记 \(f(x)\) 表示恰选 \(x\) 条白边构成的最小生成树,不难发现 \((x,f(x))\) 在坐标轴上…
题目描述 给你一棵TREE,以及这棵树上边的距离.问有多少对点它们两者间的距离小于等于K 输入输出格式 输入格式:   N(n<=40000) 接下来n-1行边描述管道,按照题目中写的输入 接下来是k   输出格式:   一行,有多少对点之间的距离小于等于k   输入输出样例 输入样例#1:  7 1 6 13 6 3 9 3 5 7 4 1 3 2 4 20 4 7 2 10 输出样例#1:  5 题解:点分裸题,考虑分治中的暴力,将所有的重心子树中的点到中心的距离排序,对于一组l-r之间如果…
Tree P4178 Tree 点分治板子. 点分治就是直接找树的重心进行暴力计算,每次树的深度不会超过子树深度的\(\frac{1}{2}\),计算完就消除影响,找下一个重心. 所以伪代码: void solve(int u) { calc(u); used[u]=true; for(int i=head[u];i;i=e[i].nxt) { int v=e[i].to; if(!used[v]) { getroot(v) solve(root); } } } calc因题而异,主要靠思维.…
点分治 还是一道点分治,和前面那道题不同的是求所有距离小于等于k的点对. 如果只是等于k,我们可以把重心的每个子树分开处理,统计之后再合并,这样可以避免答案重复(也就是再同一个子树中出现路径之和为k的点) 但是对于这道题,如果我们还要这样求的话显然是会超时的,意外要枚举所有点的话有点勉强 ... 考虑一次把重心的子树全部遍历,统计到重心的距离,放进数组中,排序.然后我们可以用指针对撞的方法,用l,r两个指针分别从前后开始扫描. 容易发现,当指针再l的位置时,如果我们记录距离排好序的数组rd[l]…
LCT 还是LCT的板子,下放标记和那道线段树2一样,先放乘..之前用char忘记getchar,调了好久... 注意开long long!! #include <bits/stdc++.h> #define INF 0x3f3f3f3f #define full(a, b) memset(a, b, sizeof a) using namespace std; typedef long long ll; inline int lowbit(int x){ return x & (-x…