matlab产生正态分布样本】的更多相关文章

mvnrnd - Multivariate normal random numbers This MATLAB function returns an n-by-d matrix R of random vectors chosen from the multivariate normal distribution with mean MU, and covariance SIGMA. 假设n维, (1)R = mvnrnd(MU,SIGMA) 返回一个n维向量(2)r = mvnrnd(MU,…
clear;clc;close all format compact %% 正态分布的拟合 % 生成随机数 num = 50; y = randn(1000,1); x = 1:num; y = hist(y,num); xx = x(:); yy = y(:); % Set up fittype and options. ft = fittype('y0+(a/(w*sqrt(pi/2)))*exp(-2*((x-xc)/w).^2)', 'independent', 'x', 'depend…
转自:http://blog.csdn.net/colddie/article/details/7773278 函数名称 函数说明 调用格式 正态总体的参数检验 ztest 单样本均值的z检验 (总体服从正态分布) [h,sig,ci,zval] = ztest(x,mu0,sigma,alpha,tail) ttest 单样本均值t检验 (总体服从正态分布) [h,sig,ci,tval] = ttest(x,mu0,alpha,tail) ttest2 双样本均值差t检验 (两个总体均服从正…
参考资料: https://www.zhihu.com/question/39823283?sort=created https://www.zhihu.com/question/288946037/answer/649328934 一维正态分布样本可以使用numpy.random.normal函数很轻松的产生.那么二维正态分布应该怎么生成呢?以上的参考资料写的很详细,有时间copy过来研究研究.…
始终无法有效把word排版好的粘贴过来,排版更佳版本请见知乎文章: https://zhuanlan.zhihu.com/p/24309547 实在搞不定博客园的排版,排版更佳的版本在: 给深度学习入门者的Python快速教程 - numpy和Matplotlib篇 5.3 Python的科学计算包 - Numpy numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算.这个库的前身是1995年就开始开发的一个用于数组运算的库.经过了长时间…
原创博文,转载请标明出处--周学伟http://www.cnblogs.com/zxouxuewei/ 5.3 Python的科学计算包 - Numpy numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算.这个库的前身是1995年就开始开发的一个用于数组运算的库.经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深度学习框架. numpy在Linux下的安装已经在5.1.2中作为例子…
给深度学习入门者的Python快速教程 基础篇 numpy和Matplotlib篇 本篇部分代码的下载地址: https://github.com/frombeijingwithlove/dlcv_for_beginners/tree/master/chap5 5.3 Python的科学计算包 – Numpy numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算.这个库的前身是1995年就开始开发的一个用于数组运算的库.经过了长时间的发展…
# 十,使用数组进行文件输入和输出 # Numpy 可以将数据以[文本]或[二进制]的形式存入硬盘,或从硬盘载入. # 由于大部分用户更倾向于使用pandas等其他工具来载入文本或表格型数据,因此,这里只讲 Numpy 的内建二进制格式. # 10.1,np.save(),np.savez(),np.savez_compressed()和 np.load() 是高效存取硬盘数据的工具函数. # np.save(),数组在默认情况下是以未压缩的格式进行存储的,后缀名是 .npy # np.save…
5.3 Python的科学计算包 - Numpy numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算.这个库的前身是1995年就开始开发的一个用于数组运算的库.经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深度学习框架. numpy在Linux下的安装已经在5.1.2中作为例子讲过,Windows下也可以通过pip,或者到下面网址下载: Obtaining NumPy & Sci…
1.基本类型(array) import numpy as np a=[1,2,3,4] b=np.array(a) #array([1,2,3.4]) type(b) #<type 'numpy.ndarray'> b.shape #(4,) c=[[1,2],[3,4]] #二维列表 d=np.array(c) #二位numpy数组 d.shape #(2,2) d.max(axis=0) #找维度0,列的最大值,即最后一个维度上的最大值,array([3,4]) d.max(axis=1…
Python数据分析入门 最近,Analysis with Programming加入了Planet Python.作为该网站的首批特约博客,我这里来分享一下如何通过Python来开始数据分析.具体内容如下: 数据导入 导入本地的或者web端的CSV文件: 数据变换: 数据统计描述: 假设检验 单样本t检验: 可视化: 创建自定义函数. 数据导入 这是很关键的一步,为了后续的分析我们首先需要导入数据.通常来说,数据是CSV格式,就算不是,至少也可以转换成CSV格式.在Python中,我们的操作如…
Z就是正态分布,X^2分布是一个正态分布的平方,t分布是一个正态分布除以(一个X^2分布除以它的自由度然后开根号),F分布是两个卡方分布分布除以他们各自的自由度再相除 比如X是一个Z分布,Y(n)=X1^2+X2^2+……+Xn^2,这里每个Xn都是一个Z分布,t(n)=X/根号(Y/n),F(m,n)=(Y1/m)/(Y2/N) 各个分布的应用如下:方差已知情况下求均值是Z检验.方差未知求均值是t检验(样本标准差s代替总体标准差R,由样本平均数推断总体平均数)均值方差都未知求方差是X^2检验两…
# 数组的组合 import numpy as np arr1 = np.arange(5) arr2 = np.arange(3) print arr1 print arr2 [0 1 2 3 4] [0 1 2] print np.hstack((arr1, arr2)) [0 1 2 3 4 0 1 2] arr3 = np.array([2, 3, 4]) print np.vstack((arr3, arr2)) [[2 3 4] [0 1 2]] print np.dstack((a…
import numpy as np a = np.arange(5) a array([0, 1, 2, 3, 4]) 增加一个维度: b = a[:, None] c = a[:,np.newaxis] b is c False b, c (array([[0], [1], [2], [3], [4]]), array([[0], [1], [2], [3], [4]])) import numpy as np a = [1, 2, 3, 4] # b = np.array(a) # arr…
Python运用于数据分析的简单教程 这篇文章主要介绍了Python运用于数据分析的简单教程,主要介绍了如何运用Python来进行数据导入.变化.统计和假设检验等基本的数据分析,需要的朋友可以参考下 我这里来分享一下如何通过Python来开始数据分析.具体内容如下:     数据导入         导入本地的或者web端的CSV文件:     数据变换:     数据统计描述:     假设检验         单样本t检验:     可视化:     创建自定义函数. 数据导入 这是很关键的…
准备工作: https://www.csie.ntu.edu.tw/~cjlin/libsvm/,下载LIBSVM:(LIBSVM工具相较于MATLAB自带的工具:1).支持多分类及回归(‘-s 0’ ,‘-s 1' -> 多分类'-s 3':'-s 4' -> 回归:'-s 2' -> one-class SVM),matlab自带的仅支持二分类,且不支持回归2).支持核函数种类多样(linear;polynomial;RBF(radial basis function);sigmoi…
处理多个演示样本研究(MIL)特点(matlab) 本文地址: http://blog.csdn.net/caroline_wendy/article/details/27206325 多演示样例学习(MIL)的特征(features)包括, "演示样例编号+视频编号+标签+特征"的形式; 须要组成多演示样例学习特定包的形式, 每个元胞是一个多演示样例包, 后面一位是标签, 即"特征包+标签"的形式; 代码: %author @ C.L.Wang %time @ 2…
样本服从正态分布,证明样本容量n乘样本方差与总体方差之比服从卡方分布x^2(n) 正态分布的n阶中心矩参见: http://www.doc88.com/p-334742692198.html…
相关Matlab函数:hist, bar, cdfplot, ksdensity (1) hist函数 n = hist(Y, x)  假设x是一个向量,返回x的长度个以x为中心的,Y的分布情况. 比如:假设x是一个5元素的向量,返回Y在以x为中心的,x长度个范围内数据直方分布. [n,xout] = hist(...)  返回n和xout.包括有数目频率和间隔位置.能够使用bar(xout, n)来绘制直方图. (2) bar函数 绘制条形图.bar(X,Y) 将Y矩阵的每一行化成一组条形图.…
randn:标准正太分布(μ=0,σ=1) normrnd:正态分布随机数,(需要手动指定 μ,σ,二者均是标量) mvnrnd:多变量正态分布随机数,(需要手动指定 μ,σ(二者为向量))…
计算14通道得脑电数据吗,将得出的样本熵插入Excel表格 a = zeros(1,14); b = a'; for i =1:14 b(i) = SampEn(d1_1(i,1:3000),2,0.2*std(d1_1(i,1:3000))); end xlswrite('C:\Users\25626\Desktop\滤波后数据\14\样本熵\样本熵.xlsx',b,'Sheet1','J');%数据写入A列 调用的SampEn函数 function SampEnVal = SampEn(da…
画出data数据 data数据 34.62365962451697,78.0246928153624,030.28671076822607,43.89499752400101,035.84740876993872,72.90219802708364,060.18259938620976,86.30855209546826,179.0327360507101,75.3443764369103,145.08327747668339,56.3163717815305,061.1066645368476…
clear all;close all;clc; randn('seed',0);mu1=[0 0];S1=[0.3 0;0 0.35];cls1_data=mvnrnd(mu1,S1,1000);plot(cls1_data(:,1),cls1_data(:,2),'+');hold on; mu2=[4 0];S2=[1.2 0;0 1.85];cls2_data=mvnrnd(mu2,S2,1000);plot(cls2_data(:,1),cls2_data(:,2),'r+');axi…
大家看了之后,可以点一波关注或者推荐一下,以后我也会尽心尽力地写出好的文章和大家分享. 本文先导:在我们平时看NBA的时候,可能我们只关心球员是否能把球打进,而不太关心这个球的颜色,品牌,只要有3D效果,看到球员扣篮的动作就可以了,比如下图: 如果我们直接对篮球照片进行几百万像素的处理,会有几千维甚至几万维的数据要计算,计算量很大.而往往我们只需要大概勾勒出篮球的大概形状就可以描述问题,所以必须对此类数据降维,这样会使处理数据更加轻松.这个在人脸识别中必须要降维,因为我们在做特征提取的时候几万维…
一.常见的概率分布 表1.1 概率分布分类表 连续随机变量分布 连续统计量分布 离散随机变量分布 分布 分布 二项分布 连续均匀分布 非中心 分布 离散均匀分布 (Gamma)分布 分布 几何分布 指数分布 非中心 分布 超几何分布 正态分布 分布 负二项分布 对数正态分布 非中心 分布 泊松分布 Weibull分布 Rayleigh分布 二.MATLAB为常见分布提供的五类函数 1) 概率密度函数(pdf); 2) (累积)分布函数(cdf); 3) 逆(累积)分布函数(icdf); 4) 随…
.6 统计作图 4.6.1 正整数的频率表 命令 正整数的频率表 函数 tabulate 格式 table = tabulate(X) %X为正整数构成的向量,返回3列:第1列中包含X的值第2列为这些值的个数,第3列为这些值的频率. 例4-49 >> A=[1 2 2 5 6 3 8] A = 1 2 2 5 6 3 8 >> tabulate(A) Value Count Percent 1 1 14.29% 2 2 28.57% 3 1 14.29% 4 0 0.00% 5 1…
一.常用对象操作:除了一般windows窗口的常用功能键外.1.!dir 可以查看当前工作目录的文件. !dir& 可以在dos状态下查看.2.who 可以查看当前工作空间变量名, whos 可以查看变量名细节.3.功能键:功能键 快捷键 说明方向上键 Ctrl+P 返回前一行输入方向下键 Ctrl+N 返回下一行输入方向左键 Ctrl+B 光标向后移一个字符方向右键 Ctrl+F 光标向前移一个字符Ctrl+方向右键 Ctrl+R 光标向右移一个字符Ctrl+方向左键 Ctrl+L 光标向左移…
matlab中各种高斯相关函数 matlab, 高斯函数, 高斯分布 最常见的是产生服从一维标准正态分布的随机数 n=100;  x=randn(1,n)  实现服从任意一维高斯分布的随机数 u=10;  sigma=4;  x=sigma*randn(1,n)+u  产生服从多元高斯分布的随机变量函数mvnrnd,[multivarite normal random] n=100; %产生随机数的个数  mu=[1 -1];  Sigma=[.9,.4;.4,.3];  r=mvnrnd(mu…
原文地址:MATLAB快捷键大全 (转载)作者:掷地有声 一.索引混排版 备注:删除了如F1(帮助)等类型的常见快捷命令 SHIFT+DELETE永久删除 DELETE删除 ALT+ENTER属性 ALT+F4关闭 CTRL+F4关闭 ALT+TAB切换 ALT+ESC切换 ALT+空格键窗口菜单 CTRL+ESC开始菜单 拖动某一项时按CTRL复制所选项目 拖动某一项时按CTRL+SHIFT创建快捷方式 将光盘插入到CD-ROM驱动器时按SHIFT键阻止光盘自动播放 Ctrl+,,... 切换…
在用MATLAB进行数据分析的时候,坏点对正确结果的影响比较大, 因此,我么需要剔除野点,对于坏值的剔除,我们 利用  3σ准则 剔除无效数据: 3σ准则又称为拉依达准则,它是先假设一组检测数据只含有随机误差,对其进行计算处理得到标准偏差,按一定概率确定一个区间, 认为凡超过这个区间的误差,就不属于随机误差而是粗大误差,含有该误差的数据应予以剔除.且3σ适用于有较多组数据的时候. 这种判别处理原理及方法仅局限于对正态或近似正态分布的样本数据处理,它是以测量次数充分大为前提的, 当测量次数较少的情…