Multiple Feature Fusion via Weighted Entropy for Visual Tracking ICCV 2015 本文主要考虑的是一个多特征融合的问题.如何有效的进行加权融合,是一个需要解决的问题.本文提出一种新的 data-adaptive visual tracking approach 通过 weighted entropy 进行多特征融合.并非像许多方法所做的简单的链接在一起的方法,本文采用加权的 entropy 来评价目标状态和背景状态之间的区分性,…
Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking 2019-03-20 16:45:23 Paper:https://arxiv.org/pdf/1812.06148.pdf Code:(尚无) 背景与动机: 本文提出一种级联的 RPN 网络结合到 Siamese RPN 网络中,然后取得了更好的跟踪效果.本文的动机如下:1). 正负样本的比例,不一致,导致 Siamese Network 的训练不够有…
Deeper and Wider Siamese Networks for Real-Time Visual TrackingUpdated on 2019-04-01 16:10:37 Paper (arXiv V3):https://arxiv.org/pdf/1901.01660.pdf Code:https://github.com/researchmm/SiamDW  (Training and Testing for SiamFC, but Testing only for Siam…
Learning regression and verification networks for long-term visual tracking 2019-02-18 22:12:25 Paper:https://arxiv.org/abs/1809.04320 Code:https://github.com/xiaobai1217/MBMD 一.文章动机: 本文是为了更好的处理长期跟踪问题,而提出一种结合 Regression 和 Classification Network 的跟踪方法…
基于自适应颜色属性的目标追踪 Adaptive Color Attributes for Real-Time Visual Tracking 基于自适应颜色属性的实时视觉追踪 3月讲的第一篇论文,个人理解,存在非常多问题,欢迎交流! 这是CVPR2014年的文章. 名字翻译为基于自适应选择颜色属性的实时视觉跟踪.首先理解什么是Adaptive color attributes,文章中colorattributes把颜色分为11类,就是将RGB三种颜色细化为黑.蓝.棕.灰.绿.橙.粉.紫.红.白和…
Learning Multi-Domain Convolutional Neural Networks for Visual Tracking CVPR 2016 本文提出了一种新的CNN 框架来处理跟踪问题.众所周知,CNN在很多视觉领域都是如鱼得水,唯独目标跟踪显得有点“慢热”,这主要是因为CNN的训练需要海量数据,纵然是在ImageNet 数据集上微调后的model 仍然不足以很好的表达要跟踪地物体,因为Tracking问题的特殊性,至于怎么特殊的,且听细细道来. 目标跟踪之所以很少被 C…
在上计算机视觉这门课的时候,老师曾经留过一个作业:识别一张 A4 纸上的手写数字.按照传统的做法,这种手写体或者验证码识别的项目,都是按照定位+分割+识别的套路.但凡上网搜一下,就能找到一堆识别的教程,分割的文章次之,而定位的文章就少之又少了.这其中的缘由也很简单:识别目前来说已经不是什么难事了,所以容易写,但分割和定位却仍然是一个头疼不已的问题,不同场景方法不同,甚至同一场景也要结合多种图像处理方法,因此很难有通用的解决策略.在深度学习火起来之后,很多研究人员开始尝试用深度学习的特征提取能力来…
这篇论文是要解决 person re-identification 的问题.所谓 person re-identification,指的是在不同的场景下识别同一个人(如下图所示).这里的难点是,由于不同场景下的角度.背景亮度等等因素的差异,同一个人的图像变化非常大,因而不能使用一般的图像分类的方法.论文采用了一种相似性度量的方法来促使神经网络学习出图像的特征,并根据特征向量的欧式距离来确定相似性.除此之外,论文通过对网络的训练过程进行分析,提出了一种计算效率更高的模型训练方法. 论文方法 相似性…
论文:https://github.com/ei1994/my_reference_library/tree/master/papers 本文的贡献点如下: 1. 提出了一个新的利用深度网络架构基于patch的匹配来明显的改善了效果: 2. 利用更少的描述符,得到了比state-of-the-art更好的结果: 3. 实验研究了该系统的各个成分的有效作用,表明,MatchNet改善了手工设计 和 学习到的描述符加上对比函数: 4. 最后,作者 release 了训练的 MatchNet模型. 网…
地址:https://arxiv.org/pdf/2006.11538.pdf github:https://github.com/iduta/pyconv 目前的卷积神经网络普遍使用3×3的卷积神经网络,通过堆叠3×3的卷积核和下采样层,会在减少图像的大小的同时增加感受野,使用小尺度的卷积核存在两个问题: 实际感受野的大小比理论上的感受野大小要小得多. 在没有获得足够的上下文信息之前就对输入图像进行下采样,会影响学习过程和网络的识别性能.由于感受野不足够大来捕获场景中不同的依赖,以至于有用的细…