(java版)斐波那契数列】的更多相关文章

ylbtech-Java-Runoob-高级教程-实例-方法:04. Java 实例 – 斐波那契数列 1.返回顶部 1. Java 实例 - 斐波那契数列  Java 实例 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368…… 特别指出:第0项是0,第1项是第一个1. 这个数列从第三项开始,每一项都等于…
斐波那契数列:0.1.1.2.3.5.8.13………… 他的规律是,第一项是0,第二项是1,第三项开始(含第三项)等于前两项之和. > 递归实现 看到这个规则,第一个想起当然是递归算法去实现了,于是写了以下一段: public class RecursionForFibonacciSequence { public static void main(String[] args) { System.out.println(recursion(10)); } public static double…
java大数做斐波那契数列:  思路:1.       2.可以用数组存着 import java.math.BigInteger; import java.util.Scanner; public class Main{ public static void main(String[] args) { Scanner cin=new Scanner(System.in); while(cin.hasNext()){//remermber BigInteger num1=cin.nextBigI…
斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368…… 特别指出:第0项是0,第1项是第一个1. 这个数列从第三项开始,每一项都等于前两项之和. 以下实例演示了 Java 斐波那契数列的实现: MainClass.java 文件 public class MainClass {          publi…
import java.util.Scanner; public class Fibonacci { public static void main(String[] args) { // TODO Auto-generated method stub Scanner in=new Scanner(System.in); System.out.println("斐波那契数列的个数是:"); int total=in.nextInt(); System.out.println("…
斐波那契数列源于数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入的计算问题.假设某种兔子兔子,出生第一个月变成大兔子,大兔子再过一个月能生下一对小兔子,且一年内不会发生死亡.现有一对小兔子,请问一年后有多少只兔子? 分析这个数列其实是有规律的第一个月:一对小兔子第二个月:一对大兔子第三个月:一对大兔子+一对小兔子第四个月:两对大兔子+一对小兔子--仔细分析:数列如下 1 1 2 3 5 8 13 21前面两位的和都是第三位的结果1+1 = 21+2 =…
public class Fibonacci { private static int getFibo(int i) { if (i == 1 || i == 2) return 1; else return getFibo(i - 1) + getFibo(i - 2); } public static void main(String[] args) { System.out.println("斐波那契数列的前20项为:"); for (int j = 1; j <= 20;…
递归简单来说就是自己调用自己, 递归构造包括两个部分: 1.定义递归头:什么时候需要调用自身方法,如果没有头,将陷入死循环 2.递归体:调用自身方法干什么 递归是自己调用自己的方法,用条件来判断调用什么时候停止! 斐波那契数列数列的递归实现: F(n)=F(n-1)+F(n-2) package test; public class Test { public static long fibonacci(int n) { if(n==0||n==1) return 1; else { retur…
小编综合了很多算法相关的书籍以及其他,总结了几种求斐波那契数列的方法 PS:其中的第83行的递归法是求斐波那契数列的经典方法 public class 斐波那契数列 { //迭代法 public static int iteration(int n){ /*此处(包含下面所有方法)声明为静态方法,原因是在本类main()方法中调用 类中方法,对于一般的非static成员变量或方法,需要有一个对象的实例才能调用,所以要先生成对象的实例,他们才会实际的分配内存空间. 而对于static的对象或方法,…
很长一段时间里,我都非常疑惑:“我写的技术文章不差啊,有内容的同时还很有趣,不至于每篇只有区区几十个人读啊?为什么有些内容简单到只有一行注册码的文章浏览量反而轻松破万?”这样的疑惑如鲠在喉啊!写技术博客做分享的人,有几个真心实意的说只写给自己看的?这无非是写出来后没人看的自我安慰(不好意思,我就属于这种人,/(ㄒoㄒ)/~~). 但就在昨天晚上,我终于恍然大悟:技术交流群里有一个叫涛涛的小伙伴用几句通俗易懂的道理就点醒了我:“高深的文章,看懂的人少,适合高层:像只有注册码的文章,反而是大众所需,…
java 实现斐波那契数列 以下是Java代码实现(递归与递推两种方式): import java.util.Scanner; /** * Fibonacci * * @author tongqian.zhang */ public class Fibonacci { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); System.out.println("Please input…
斐波那契数列,即1.1.2.3.5......,从第三个数开始包括第三个数,都为这个数的前两个数之和,而第一第二个数都为1. 下面是java输出斐波那契数列的代码: import java.util.HashMap; public class Test{ //定义一个hashMap来存储已经计算并且输出过的值 public static HashMap<Integer, Integer> hashMap = new HashMap<Integer,Integer>(); //递归方…
Fibonacci Sequence # fibonacci sequence 斐波那契数列 def fibonacci_for(n): # 使用for循环返回n位斐波那契数列列表 li = [] for i in range(n+1): if i == 0 or i == 1: li.append(1) else: li.append(li[i-2] + li[i-1]) return li def fibonacci_sequence(over, x=1, y=1): # 返回一个over值…
书中方法一:递归,这种方法效率不高,因为可能会有很多重复计算. public long calculate(int n){ if(n<=0){ return 0; } if(n == 1){ return 1; } return calculate(n-1) + calculate(n-2); } 书中方法二:更好的方法是将这个斐波那契数列的计算理解成动态规划,第n步的结果依赖于第n-1步和第n-2步的结果,状态转移方程很容易写出来. public long calculate2(int n){…
题目:写一个函数,输入n,求斐波那契数列的第n项.斐波那契数列的定义如下: 1.效率很低效的解法,挑剔的面试官不会喜欢 使用递归实现: public class Fibonacci { public long getNum(int n){ if(n<=0){ return 0; }else if(n==1){ return 1; }else{ return getNum(n-1)+getNum(n-2); } } } 我们不难发现在这颗树中有很多的节点是重复的,而且重复的节点数会随着n的增大而急…
 本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集   题目 写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项. 思路 如果直接写递归函数,由于会出现很多重复计算,效率非常底,不采用. 要避免重复计算,采用从下往上计算,可以把计算过了的保存起来,下次要计算时就不必重复计算了:先由f(0)和f(1)计算f(2),再由f(1)和f(2)计算f(3)……以此类推就行了,计算第n个时,只要保存第n-1和第n-2项就可以了.…
java编程基础--斐波那契数列 问题描述:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:可能出现的情况:(1) n=1 ,一种方法 ;(2)n=2,两种方法;(3)对于第n阶,只能从第n-1阶或者n-2阶跳上,所以得出结论: | 1, (n=1) f(n) =     | 2, (n=2) | f(n-1)+f(n-2) ,(n>2,n为整数) public static void main(String[] args) { int a =2…
import java.util.Scanner; /* 斐波那契数列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式::F(n)=F(n-1)+F(n-2) 显然这是一个线性递推数列. */ public class Fibonacci { // 使用递归方法 private static void recursion(int n) { int j = n; System…
/** * 描述:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第四个月后每个月又生一对兔子, * 假如兔子都不死,问每个兔子总数为多少? * 分析:根据题目条件可以推断 * 兔子的规律为数列 1,1,2,3,5,8,13,21...(即:斐波那契数列) * 作者:徐守威 */ package com.xushouwei; import java.util.*; public class T1 { /** * @param args */ public static void ma…
斐波那契数列问题:如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第三个月里,又能开始生1对小兔子,假定在不发生死亡的情况下,由一对初生的兔子开始,1年后能繁殖出多少对兔子? 首先手工计算来总结规律,如下表 注意总数这一列 1+1=2 1+2=3 2+3=5 3+5=8 5+8=13 可以得出规律,第n个斐波那契数=第n-1个斐波那契数+第n-2个斐波那契数 为了计算n,必须计算n-1和n-2:为了计算n-1,必须计算n-2和n-3:直到n-x的值为1为止,这显示是递归大显身手的地方.来看…
题目要求:编写程序在控制台输出斐波那契数列前20项,每输出5个数换行 斐波那契数列指的是这样一个数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, … 这个数列从第三项开始,每一项都等于前两项之和. //java编程:三种方法实现斐波那契数列//其一方法: public class Demo1 { // 定义三个变量方法 public static void main(String[] args) { int a = 1, b = 1, c = 0; Sy…
为什么说 “算法是程序的灵魂这句话一点也不为过”,递归计算斐波那契数列的第50项是多少? 方案一:只是单纯的使用递归,递归的那个方法被执行了250多亿次,耗时1分钟还要多. 方案二:用一个map去存储之前计算出的某一项的数据map<n, feibo(n)>,当后面项需要使用前面项的值时,只需要从map中取即可,递归的那个方法仅仅行了97次,耗时还不到1ms. 而这仅仅是计算第50项的值,再往大去计算的话,方案一耗时会更久,因为执行的次数是呈现指数增加的,而且递归的次数过多还有可能会出现栈溢出的…
最近在面试的时候被问到了斐波那契数列,而且有不同的实现方式,就在这里记录一下. 定义 斐波那契数列指的是这样一个数列 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368. 这个数列从第3项开始,每一项都等于前两项之和. 参考自百度百科 Java实现 递推方式 public static void testFibonacci1(int n)…
剑指offer第九题Java实现 题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项. public class Test9 { public static void main(String[] args) { Test9 test9 = new Test9(); System.out.println(test9.Fibonacci(390000)); System.out.println(test9.Fibonacci3(39)); } /** * 为什么不采…
一,求最大,最小值 int[] a={21,31,4,2,766,345,2,34}; //这里防止数组中有负数,所以初始化的时候给的数组中的第一个数. int max=a[0]; int min=a[0]; for (int i = 0; i < a.length; i++) { if(a[i]>max) max=a[i]; if(a[i]<min) min=a[i]; } System.out.println("最大的数是:"+max); System.out.p…
一:斐波那契数列问题的起源 13世纪初期,意大利数论家Leonardo Fibonacci在他的著作Liber Abaci中提出了兔子的繁殖问题: 如果一开始有一对刚出生的兔子,兔子的长大需要一个月,长大后的兔子每个月能生产一对兔子,假设兔子不会死亡,那么一年后有多少只兔子? 不难看出每个月的兔子的总数可以用以下数列表示:1,1,2,3,5,8,13...... 二:最直观的算法 1.算法实现 通过观察我们不难发现斐波那契数列从第三项开始每一项都是前两项的和,因此我们不难总结出该数列的递推公式:…
Java兔子问题(斐波那契数列)扩展篇 斐波那契数列指的是这样一个数列 0, 1, 1, 2,3, 5, 8, 13, 21, 34, 55, 89, 144, ...对于这个数列仅仅能说将兔子生产周期第为3月.假设生成周期变成4月这个数列肯定不是这种,或者说兔子还有死亡周期,在这里我是对兔子生产周期没有限定.仅仅要月份大于生产周期都能够计算出第month月份究竟能产生多少对兔子. Java兔子生殖问题 斐波那契数列又因数学家列昂纳多·斐波那契以兔子生殖为样例而引入.故又称为"兔子数列"…
面试题10:斐波那契数列 题目要求: 求斐波那契数列的第n项的值.f(0)=0, f(1)=1, f(n)=f(n-1)+f(n-2) n>1 思路:使用循环从下往上计算数列. 考点:考察对递归和循环的选择.使用递归的代码通常比循环简洁,但使用递归时要注意一下几点:1.函数调用的时间和空间消耗:2.递归中的重复计算:3.最严重的栈溢出.根据斐波那契数列递归形式定义很容易直接将代码写成递归,而这种方式有大量重复计算,效率很低. 解法比较: 解法3,4将问题数学化,借助数学工具的推导,从根本上减低时…
一.什么是斐波那契数列 斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为"兔子数列",指的是这样一个数列:1,1,2,3,5,8,13,21,34,--1,1,2,3,5,8,13,21,34,--在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1,F(n)=F(n−1)+F(n−2)(n>=3,n∈N∗) 二.Java实现(输出前…
题目: 大家都知道斐波那契数列,现在要求输入一个整数n,请你输出斐波那契数列的第n项(从0开始,第0项为0). n<=39 分析: 斐波那契数列是0,1,1,2,3,5,8,13...也就是当前的数字是前两个数字之和. 题目很简单求出斐波那契数列第n项. 程序: C++ class Solution { public: int Fibonacci(int n) { ) ; ) ; ; ; ; ; i <= n; ++i){ temp = sNum; sNum = fNum + sNum; fN…