---恢复内容开始--- shuffle和排序 过程图如下: MapReduce确保每个reduce的输入都按键排序,系统执行排序的过程——将map输出作为输入传给reduce——成为shuffle,理解shuffle的工作原理,有助于MapReduce程序的优化,因为shuffle属于不断被优化和改进的代码库的一部分,shuffle是MapReduce的心脏,是奇迹发生的地方 map端 map函数开始产生输出时,并不是简单的将它写到磁盘,这个过程非常复杂,它是利用缓冲的方式写到内存,并处于效率…
Shuffle是连接Map和Reduce的桥梁 Shuffle分为Map端的Shuffle和Reduce端的Shuffle Map端的shuffle 1输入数据和执行任务: 分片后分配Map任务,每个任务分配100M缓存 2写入缓存 在溢写过程中: 3溢写 溢写比达到0.8后启动溢写进程,把缓存写入到磁盘 分区:默认采用哈希函数 排序:默认操作 合并:可能发生(Combine),减少键值对数量 4文件归并: 在Map任务结束前进行归并 归并得到一个打文件,放在本地磁盘 如果溢写文件大于3时启动C…
摘要: 通过腾讯shuffle部署对shuffle过程进行详解 摘要:腾讯分布式数据仓库基于开源软件Hadoop和Hive进行构建,TDW计算引擎包括两部分:MapReduce和Spark,两者内部都包含了一个重要的过程—Shuffle.本文对Shuffle过程进行解析,并对两个计算引擎的Shuffle过程进行比较. 腾讯分布式数据仓库(Tencent distributed Data Warehouse, 简称TDW)基于开源软件Hadoop和Hive进行构建,并且根据公司数据量大.计算复杂等…
彻底理解MapReduce shuffle过程原理 MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据. 为什么MapReduce计算模型需要Shuffle过程?我们都知道MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Redu…
MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一组无规则的数据尽量转换成一组具有一定规则的数据. 为什么MapReduce计算模型需要Shuffle过程?我们都知道MapReduce计算模型一般包括两个重要的阶段:Map是映射,负责数据的过滤分发:Reduce是规约,负责数据的计算归并.Reduce的数据来源于Map,Map的输出即是Reduce…
https://blog.csdn.net/u010697988/article/details/70173104 大数据的分布式计算框架目前使用的最多的就是hadoop的mapReduce和Spark,mapReducehe和Spark之间的最大区别是前者较偏向于离线处理,而后者重视实现性,下面主要介绍mapReducehe和Spark两者的shuffle过程. MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随…
Shuffle的本意是洗牌.混乱的意思,类似于java中的Collections.shuffle(List)方法,它会随机地打乱参数list里的元素顺序.MapReduce中的Shuffle过程.所谓Shuffle过程可以大致的理解成:怎样把map task的输出结果有效地传送到reduce输入端.也可以这样理解, Shuffle描述着数据从map task输出到reduce task输入的这段过程.  上图表示的是Shuffle的整个过程.在Hadoop这样的集群环境中,大部分map task…
在上一节分析了TaskTracker和JobTracker之间通过周期的心跳消息获取任务分配结果的过程.中间留了一个问题,就是任务到底是怎么分配的.任务的分配自然是由JobTracker做出来的,具体来说,存在一个抽象类:TaskScheduler,主要负责分配任务,继承该类的有几个类: CapacityTaskScheduler.FairScheduler.JobQueueTaskScheduler(LimitTasksPerJobTaskScheduler又继承于该类). 从名字大致可以看出…
TaskTracker执行map或reduce任务的过程(二) 上次说到,当MapLauncher或ReduceLancher(用于执行任务的线程,它们扩展自TaskLauncher),从它们所维护的LinkedList也即队列中获取到TaskInProgress,并且TaskTracker有空闲的slot时,该线程就调用了TaskTracker的startNewTask(tip)方法,如下所示: public void run() { while (!Thread.interrupted())…
TaskTracker获取并执行map或reduce任务的过程(一) 我们知道TaskTracker在默认情况下,每个3秒就行JobTracker发送一个心跳包,也就是在这个心跳包中包含对任务的请求.JobTracker返回给TaskTracker的心跳包中包含有各种action(任务),如果有满足在此TaskTracker上执行的任务的话,该任务也就包含在心跳包的响应中.在TaskTracker端有线程专门等待map或reduce任务,并从队列中取出执行. 1. TaskTracker发送心跳…