基于RL(Q-Learning)的迷宫寻路算法】的更多相关文章

简介 基于[漫画算法-小灰的算法之旅]上的A星寻路算法,开发的一个Demo.目前实现后退.重新载入.路径提示.地图刷新等功能.没有做太多的性能优化,算是深化对A星寻路算法的理解. 界面预览: 初始化: 寻路: 后退: 提示: 完成: 刷新地图: 下载地址: 项目地址: https://github.com/milovetingting/Maze…
前言 在上一篇文章,介绍了网格地图的实现方式,基于该文章,我们来实现一个A星寻路的算法,最终实现的效果为: 项目源码已上传Github:AStarNavigate 在阅读本篇文章,如果你对于里面提到的一些关于网格地图的创建方式的一些地图不了解的话,可以先阅读了解一下下面的这篇文章: 文章链接: Unity 制作一个网格地图生成组件 1.简单做一些背景介绍 在介绍A星寻路算法前,先介绍另外一种算法:Dijkstra寻路算法,简单的来说是一种A星寻路的基础版.Dijkstra作为一种无启发的寻路算法…
本系列文章由七十一雾央编写,转载请注明出处.  http://blog.csdn.net/u011371356/article/details/10289253 作者:七十一雾央 新浪微博:http://weibo.com/1689160943/profile?rightmod=1&wvr=5&mod=personinfo 因为前段时间在学习Cocos2d-X引擎,然后自己最近就练手写了个小游戏练习,花了自己不少时间,所以这个系列没怎么更新,不过以后雾央会继续更新的,分享自己学到的新东西.…
PHP树生成迷宫及A*自己主动寻路算法 迷宫算法是採用树的深度遍历原理.这样生成的迷宫相当的细,并且死胡同数量相对较少! 随意两点之间都存在唯一的一条通路. 至于A*寻路算法是最大众化的一全自己主动寻路算法 完整代码已上传,http://download.csdn.net/detail/hello_katty/8885779 ,此处做些简单解释,还须要大家自己思考动手.废话不多说,贴上带代码 迷宫生成类: /** 生成迷宫类 * @date 2015-07-10 * @edit http://w…
作者:牛阿链接:https://www.zhihu.com/question/26408259/answer/123230350来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 2017年06月05日更新,最近重写了一遍代码,Flappy Bird Q-learning.你可以在这里试着训练一下,加到最大帧数,在一两分钟内就可以达到10+的分数. 原答案: 最近看到了一个回答.答主用汇编语言写了一个flappy bird并在其之上加了一个Q-learning的算法让…
A*寻路算法的探寻与改良(三) by:田宇轩                                        第三分:这部分内容基于树.查找算法等对A*算法的执行效率进行了改良,想了解细化后的A*算法和变种A*算法内容的朋友们可以跳过这部分并阅读稍后更新的其他内容 3.1 回顾       你可以点击这里回顾文章的第二部分. 在我的上一篇文章中,我们探讨了如何用编程实现A*算法,并给出了C语言的算法实现,这一章内容中我们主要研究如何提高A*算法的执行效率.抛开时间复杂度的复杂计算,…
A*寻路算法的探寻与改良(二) by:田宇轩                                                     第二部分:这部分内容主要是使用C语言编程实现A*,想了解A*算法的优化内容的朋友们可以跳过这部分并阅读稍后更新的其他内容 2.1 回顾        你可以点击这里回顾文章的第一部分. 在我的上一篇文章中,我们通过抽象的思维方式得出了A*算法的概念和原理,这一章内容中主要探讨如何用编程实现A*算法. 在数据结构与算法的学习中,每个算法都应该结合一定…
A*寻路算法的探寻与改良(一) by:田宇轩                                                                    第一部分:这里我们主要探讨A*算法的基本概念和原理,对A*算法有一定了解的朋友们可以跳过并阅读稍后更新的其他部分 1.1 前言 这篇文章原来属于我的数据结构课设内容,这学期的数据结构和算法学习让我仿佛打开了新世界的大门,让我意识到优化美学和设计代码是这么有趣的事情,这是一种在编程语言之上抽象力量.因此我准备在博客园长期…
之前讲到Sarsa和Q Learning都不太适合解决大规模问题,为什么呢? 因为传统的强化学习都有一张Q表,这张Q表记录了每个状态下,每个动作的q值,但是现实问题往往极其复杂,其状态非常多,甚至是连续的, 比如足球场上足球的位置,此时,内存将无力承受这张Q表. 价值函数近似 既然Q表太大,那么怎么办呢? 假设我们可以找到一种方法来预测q值,那么在某个状态下,就可以估计其每个动作的q值,这样就不需要Q表了,这就是价值函数近似. 假设这个函数由参数w描述,那么 状态价值函数就表示为 v(s)≍f(…
搜索排序相关的方法,包括 Learning to rank 基本方法 Learning to rank 指标介绍 LambdaMART 模型原理 FTRL 模型原理 Learning to rank 排序学习是推荐.搜索.广告的核心方法.排序结果的好坏很大程度影响用户体验.广告收入等.排序学习可以理解为机器学习中用户排序的方法,这里首先推荐一本微软亚洲研究院刘铁岩老师关于LTR的著作,Learning to Rank for Information Retrieval,书中对排序学习的各种方法做…