拉格朗日乘子(Lagrange multify)和KKT条件 无约束问题 无约束问题定义如下: f(x)称为目标函数, 其中x是一个向量,它的维度是任意的. 通过求导, 令导数等于零即可: 如下图所示: 等式约束问题 单约束问题 单约束问题定义如下: g(x)称为约束函数 单约束问题的解决步骤如下: 1, 加一个变量,这个变量称为拉格朗日乘子将约束条件和目标函数联立构造拉格朗日函数 2, 对每个变量分别求导, 令导数等于零,求得最优值 这是一个例子: 使用一个约束,一个拉格朗日乘子,得到拉格朗日…