从位图到布隆过滤器,C#实现】的更多相关文章

前言 本文将以 C# 语言来实现一个简单的布隆过滤器,为简化说明,设计得很简单,仅供学习使用. 感谢@时总百忙之中的指导. 布隆过滤器简介 布隆过滤器(Bloom filter)是一种特殊的 Hash Table,能够以较小的存储空间较快地判断出数据是否存在.常用于允许一定误判率的数据过滤及防止缓存击穿及等场景. 相较于 .NET 中的 HashSet 这样传统的 Hash Table,存在以下的优劣势. 优势: 占用的存储空间较小.不需要像 HashSet 一样存储 Key 的原始数据. 劣势…
一.Redis位图 1.位图的最小单位是bit,每个bit的值只能是0和1,位图的应用场景一般用于一些签到记录,例如打卡等. 场景举例: 例如某APP要存储用户的打卡记录,如果按照正常的思路来做,可能是用户每天是否打卡的记录都单独设置一个key-value键值对来存储,这样的话,每个用户每天都需要耗费一个键值对空间.而如果是位图,就可以很方便地通过位图来进行记录,例如如下图: 位图不算基础数据结构或者特殊数据结构,其本质上还是字符串.由于每个bit代表一个数据,所以还可以当作是bit数组来看待.…
原文链接:http://blog.csdn.net/qq_38646470/article/details/79431659 1.概念: 如果想判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定.链表,树等等数据结构都是这种思路. 但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢.不过世界上还有一种叫作散列表(又叫哈希表,Hash table)的数据结构.它可以通过一个Hash函数将一个元素映射成一个位阵列(Bit Array)中的一个点.这…
布隆过滤器 这名词有没有听着好像很 挺高大上的,的确,它也是一种很重要的结构,下面一起看看: 一:说说历史: (Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter报告某一元素存在于某集合中,但是实际上该元素并不…
一.布隆过滤器: 布隆过滤器(Bloom Filter)是1970年由布隆提出的.它实际上是一个很长的二进制向量和一系列随机映射函数.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难.布隆过滤器是与哈希算法是相关的,是工业实践上常用的算法,之前我们使用HashMap或者HashSet来查找重复的话也是可以的,但是对于在数据量比较大的情况下去查询那么速度就比较慢了,这个时候对于大的数据量来进行检索使用布隆过滤查找速…
题目描述 一个网站有 100 亿 url 存在一个黑名单中,每条 url 平均 64 字节.这个黑名单要怎么存?若此时随便输入一个 url,你如何快速判断该 url 是否在这个黑名单中? 题目解析 这是一道经常在面试中出现的算法题.凭借着题目极其容易描述,电面的时候也出现过. 不考虑细节的话,此题就是一个简单的查找问题.对于查找问题而言,使用散列表来处理往往是一种效率比较高的方案. 但是,如果你在面试中回答使用散列表,接下来面试官肯定会问你:然后呢?如果你不能回答个所以然,面试官就会面无表情的通…
先从一道面试题开始: 给A,B两个文件,各存放50亿条URL,每条URL占用64字节,内存限制是4G,让你找出A,B文件共同的URL. 这个问题的本质在于判断一个元素是否在一个集合中.哈希表以O(1)的时间复杂度来查询元素,但付出了空间的代价.在这个大数据问题中,就算哈希表有100%的空间利用率,也至少需要50亿*64Byte的空间,4G肯定是远远不够的. 当然我们可能想到使用位图,每个URL取整数哈希值,置于位图相应的位置上.4G大概有320亿个bit,看上去是可行的.但位图适合对海量的.取值…
欢迎关注微信公众号:万猫学社,每周一分享Java技术干货. 什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告诉你某种东西一定不存在或者可能存在.当布隆过滤器说,某种东西存在时,这种东西可能不存在:当布隆过滤器说,某种东西不存在时,那么这种东西一定不存在. 布隆过滤器相对于Set.Map 等数据结构来说,它可以更高效地插入和查询,并且占用空间更少,它也有缺点,就是判断某种东西是否存在时,可能会被误判.但是只…
本篇博客我们主要介绍如何用Redis实现布隆过滤器,但是在介绍布隆过滤器之前,我们首先介绍一下,为啥要使用布隆过滤器. 1.布隆过滤器使用场景 比如有如下几个需求: ①.原本有10亿个号码,现在又来了10万个号码,要快速准确判断这10万个号码是否在10亿个号码库中? 解决办法一:将10亿个号码存入数据库中,进行数据库查询,准确性有了,但是速度会比较慢. 解决办法二:将10亿号码放入内存中,比如Redis缓存中,这里我们算一下占用内存大小:10亿*8字节=8GB,通过内存查询,准确性和速度都有了,…
大家都知道,在计算机中,IO一直是一个瓶颈,很多框架以及技术甚至硬件都是为了降低IO操作而生,今天聊一聊过滤器,先说一个场景: 我们业务后端涉及数据库,当请求消息查询某些信息时,可能先检查缓存中是否有相关信息,有的话返回,如果没有的话可能就要去数据库里面查询,这时候有一个问题,如果很多请求是在请求数据库根本不存在的数据,那么数据库就要频繁响应这种不必要的IO查询,如果再多一些,数据库大多数IO都在响应这种毫无意义的请求操作,那么如何将这些请求阻挡在外呢?过滤器由此诞生: 布隆过滤器 布隆过滤器(…
一.布隆过滤器 布隆过滤器:一种数据结构.由二进制数组(很长的二进制向量)组成的.布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难. 布隆过滤器设计理念:如果想要判断一个元素是不是在一个集合里,一般想到的是将所有元素保存起来,然后通过比较确定.链表,树等等数据结构都是这种思路.但是随着集合中元素的增加,我们需要的存储空间越来越大,检索速度也越来越慢.这时布隆过滤器就产生了.它可以通过N个Hash函数将一个元素映射…
什么是布隆过滤器 布隆过滤器(Bloom Filter)是由Howard Bloom在1970年提出的一种比较巧妙的概率型数据结构,它可以告诉你某种东西一定不存在或者可能存在.当布隆过滤器说,某种东西存在时,这种东西可能不存在:当布隆过滤器说,某种东西不存在时,那么这种东西一定不存在. 布隆过滤器相对于Set.Map 等数据结构来说,它可以更高效地插入和查询,并且占用空间更少,它也有缺点,就是判断某种东西是否存在时,可能会被误判.但是只要参数设置的合理,它的精确度也可以控制的相对精确,只会有小小…
​ 何为布隆过滤器? 本质上是一种数据结构,是1970年由布隆提出的.它实际上是一个很长的二进制向量(位图)和一系列随机映射函数(哈希函数).可以用于检索一个元素是否在一个集合中. 数据结构: 布隆过滤器是一个 bit 向量或者说 bit 数组,就是一个二进制的数据,数据存放0或1.如果我们要映射一个值到布隆过滤器中,我们需要使用多个不同的哈希函数生成多个哈希值, 并对每个生成的哈希值指向的 bit 位置为 1. 布隆过滤器的日常使用 在日常生活中,包括在设计计算机软件时,我们经常要判断一个元素…
说到布隆过滤器不得不提到,redis, redis作为现在主流的nosql数据库,备受瞩目:它的丰富的value类型,以及它的偏向计算向数据移动属性减少IO的成本问题.备受开发人员的青睐.通常我们使用redis作为数据缓存来使用,但是作为缓存redis会有一些问题,就是缓存穿透问题.击穿.雪崩.一致性双写.本次主要讲解的就是穿透问题 首先我们先思考一下为什么会产生穿透的问题. 假设我们有一些数据,存储在了MySQL中,但是由于用户量的庞大我们需要在在用户访问数据的时候需要在redis中进行一个过…
一.过滤器使用场景:比如有如下几个需求:1.原本有10亿个号码,现在又来了10万个号码,要快速准确判断这10万个号码是否在10亿个号码库中? 解决办法一:将10亿个号码存入数据库中,进行数据库查询,准确性有了,但是速度会比较慢. 解决办法二:将10亿号码放入内存中,比如Redis缓存中,这里我们算一下占用内存大小:10亿*8字节=8GB,通过内存查询,准确性和速度都有了,但是大约8gb的内存空间,挺浪费内存空间的.2.接触过爬虫的,应该有这么一个需求,需要爬虫的网站千千万万,对于一个新的网站ur…
布隆过滤器 布隆过滤器是一种概率空间高效的数据结构.它与hashmap非常相似,用于检索一个元素是否在一个集合中.它在检索元素是否存在时,能很好地取舍空间使用率与误报比例.正是由于这个特性,它被称作概率性数据结构(probabilistic data structure). 空间效率 我们来仔细地看看它的空间效率.如果你想在集合中存储一系列的元素,有很多种不同的做法.你可以把数据存储在hashmap,随后在hashmap中检索元素是否存在,hashmap的插入和查询的效率都非常高.但是,由于ha…
转自:http://blog.csdn.net/jiaomeng/article/details/1495500 之前看数学之美丽,里面有提到布隆过滤器的过滤垃圾邮件,感觉到何其的牛,竟然有这么高效的算法,一直在听这个名词,但一直没有正儿八经的去了解,今天看到了一篇关于Bloom Filter 的讲解,真是有种沁人心脾的感觉.转过来加深自己的了解. 在开始转载之前,为了加深读者的印象,先介绍一下在BloomFilter里面含有的重要角色 先在脑中留下印象,然后在来消化转载的内容 Bloom Fi…
转自:http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html   布隆过滤器[1](Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter报告某一…
什么情况下需要布隆过滤器? 先来看几个比较常见的例子 字处理软件中,需要检查一个英语单词是否拼写正确 在 FBI,一个嫌疑人的名字是否已经在嫌疑名单上 在网络爬虫里,一个网址是否被访问过 yahoo, gmail等邮箱垃圾邮件过滤功能 这几个例子有一个共同的特点: 如何判断一个元素是否存在一个集合中? 常规思路 数组 链表 树.平衡二叉树.Trie Map (红黑树) 哈希表 虽然上面描述的这几种数据结构配合常见的排序.二分搜索可以快速高效的处理绝大部分判断元素是否存在集合中的需求.但是当集合里…
一.布隆过滤器介绍 Bloom Filter是一种空间效率很高的随机数据结构,Bloom Filter可以看做是对bit-map的扩展,它的原理如下: 当一个元素被加入集合时,通过K个Hash函数将这个元素映射成一个位阵列(Bit Array)中的K个点,把它们置为1,检索时我们只要看看这些点是不是都是1就(大约)知道集合中有没有它了. 1.如果这些点有任何一个0,那么被检索元素一定不存在: 2.如果都是1,那么被检索元素可能存在: 存在这种场景:有A,B二个数,A存在,但B不存在.假如利用Bl…
package com.kaikeba.data.jobspider.util; import java.util.BitSet; public class Bloomfilter { private  static final int DEFAULT_SIZE = 2 << 29;//布隆过滤器的比特长度 private static final int[] seeds = {3,5,7, 11, 13, 31, 37, 61};//这里要选取质数,能很好的降低错误率 private  Bi…
布隆过滤器用于测试某一元素是否存在于给定的集合中,是一种空间利用率很高的随机数据结构(probabilistic data structure),存在一定的误识别率(false positive),即布隆过滤器报告某一元素存在于某集合中,但是实际上该元素并不在集合中,但是没有错误识别的情形(false negative),即如果某个元素确实没有在该集合中,那么布隆过滤器是不会报告该元素存在于集合中的,没有漏报的情形出现,召回率为百分之百.   算法描述   布隆过滤器实际上是一个位数组,元素数目…
1.原理:           a.解决的问题:                判断一个元素是否在一个集合中             b.Hash表的特点:                i.快速准确,但是耗费存储空间                ii.先将url或者email转为8个字节的信息指纹,在考虑Hash50%的存储效率,1亿url或者email需要16亿字节,即1.6GB空间             c.布隆过滤器:                i.能用1/8到1/4大小的空间就…
简化布隆过滤器--BitMap 前言 前段开发项目试就发现,一部分的代码实现存在着一些性能上的隐患.但当时忙于赶进度和由于卡发中的不稳定因素,想了许多解决方案也没有机会实施.最近,正好趁个机会进行一系列的改进. 我在团队开发中负责开发服务器端.所以在编写业务逻辑层时,常常遇到以下这样的业务逻辑:1. 判断一个用户是否为在自己的好友列表中2. 判断一条动态是否已被用户翻阅3. 判断两个用户的标签的匹配度4. .....等等这些情况,我之前的方案是采用数据库来解决,为每条记录添加标记,需要查询时则遍…
转载自http://www.cnblogs.com/haippy/archive/2012/07/13/2590351.html   布隆过滤器[1](Bloom Filter)是由布隆(Burton Howard Bloom)在1970年提出的.它实际上是由一个很长的二进制向量和一系列随机映射函数组成,布隆过滤器可以用于检索一个元素是否在一个集合中.它的优点是空间效率和查询时间都远远超过一般的算法,缺点是有一定的误识别率(假正例False positives,即Bloom Filter报告某一…
摘要 Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式程序的统一去重.我们可以将数据进行持久化,这样就克服了down机的问题,常见的持久化方法包括持久化到本地磁盘或结合Redis进行持久化.本文主要介绍持久化到本地的操作. 关于BloomFilter的基本原理.jar包及入门Demo,请参考我的博客:布隆过滤器 数据持久化 import java.io.File; import java.io.FileNotFoundException;…
直观的说,bloom算法类似一个hash set,用来判断某个元素(key)是否在某个集合中.和一般的hash set不同的是,这个算法无需存储key的值,对于每个key,只需要k个比特位,每个存储一个标志,用来判断key是否在集合中. 算法: 1. 首先需要k个hash函数,每个函数可以把key散列成为1个整数 2. 初始化时,需要一个长度为n比特的数组,每个比特位初始化为0 3. 某个key加入集合时,用k个hash函数计算出k个散列值,并把数组中对应的比特位置为1 4. 判断某个key是否…
Bloom Filter(布隆过滤器) 布隆过滤器用于测试某一元素是否存在于给定的集合中,是一种空间利用率很高的随机数据结构(probabilistic data structure),存在一定的误识别率(false positive),即布隆过滤器报告某一元素存在于某集合中,但是实际上该元素并不在集合中,但是没有错误识别的情形(false negative),即如果某个元素确实没有在该集合中,那么布隆过滤器是不会报告该元素存在于集合中的,没有漏报的情形出现,召回率为百分之百.   算法描述  …
本文摘抄自我的微信公众号"程序员柯南",欢迎关注!原文阅读 缓存穿透是什么? 关于缓存穿透,简单来说就是系统处理了大量不存在的数据查询.正常的使用缓存流程大致是,数据查询先进行缓存查询,如果key不存在或者key已经过期,再对数据库进行查询,并把查询到的对象,放进缓存.如果数据库查询对象为空,则不放进缓存.现在系统接收了大量不存在的key,缓存层形同虚设,大量请求引向数据库,数据库承受不了压力,宕机. 布隆过滤器是什么? Bloom Filter适用于判断数据是否在一个集合中. Blo…
布隆过滤器雏形 未完待续..... 计算错误率 现在有一个空额布隆过滤器, 过滤器里的bit array的大小是m. 咱来插入一个元素. 这次插入过程中的第一个hash函数会算出一个位置, 然后把这个位置设置为1. 此时如果在这个过滤器中随机选取一个位置, 这个位置的值是1的概率为:     (式①) 这个位置的值是0的概率为:     (式②) 插入这个元素需要进行k个hash运算, 然后把相应的位置的值都改为1. 这个元素插入完之后, 从这个过滤器中, 随机取一个位置, 这个位置的值是0的概…