首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
C数列或者C向量以及C矩阵
】的更多相关文章
【BZOJ3243】【NOI2013】向量内积(矩阵,数论)
[BZOJ3243][NOI2013]向量内积(矩阵,数论) 题面 BZOJ 题解 这题好神仙. 首先\(60\)分直接是送的.加点随机之类的可以多得点分. 考虑正解. 我们先考虑一下暴力. 我们把\(n\)个向量拼接在一起,形成一个\(n\times d\)的矩阵. 显然这个矩阵和它的转置矩阵,也就是一个\(d\times n\)的矩阵做乘法, 结果是一个\(n\times n\)的矩阵,第\(i\)行第\(j\)列就是\(i,j\)两个向量的结果. 如果这个矩阵全是\(1\)(除主对角线),…
Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API
Spark机器学习MLlib系列1(for python)--数据类型,向量,分布式矩阵,API 关键词:Local vector,Labeled point,Local matrix,Distributed matrix,RowMatrix,IndexedRowMatrix,CoordinateMatrix,BlockMatrix. 前言:MLlib支持本地向量和存储在单机上的矩阵,当然也支持被存储为RDD的分布式矩阵.一个有监督的机器学习的例子在MLlib里面叫做标签点. 1. 本地向量 一…
【BZOJ-3243】向量内积 随机化 + 矩阵
3243: [Noi2013]向量内积 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1249 Solved: 248[Submit][Status][Discuss] Description 两个d 维向量A=[a1,a2,...,ad]与B=[b1,b2,...,bd]的内积为其相对应维度的权值的乘积和,即: 现有 n 个d 维向量x1,...,xn ,小喵喵想知道是否存在两个向量的内积为k的倍数.请帮助…
【bzoj5118】Fib数列2 费马小定理+矩阵乘法
题目描述 Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2) 现给出N,求Fib(2^n). 输入 本题有多组数据.第一行一个整数T,表示数据组数. 接下来T行每行一个整数N,含义如题目所示. n≤10^15, T≤5 输出 输出共T行,每行一个整数为所求答案. 由于答案可能过大,请将答案mod 1125899839733759后输出 样例输入 2231 样例输出 3343812777493853 题解 费马小定理+矩阵乘法 傻逼题,根据…
51nod1242斐波那契数列的第N项 【矩阵快速幂】
斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可. Input 输入1个数n(1 <= n <= 10^18). Output 输出F(n) % 1000000009的结果. Sample Input 11…
斐波那契数列第N项f(N)[矩阵快速幂]
矩阵快速幂 定义矩阵A(m*n),B(p*q),A*B有意义当且仅当n=p.即A的列数等于B的行数. 且C=A*B,C(m*q). 例如: 进入正题,由于现在全国卷高考不考矩阵,也没多大了解.因为遇到了斐波那契这题... 注意到: Fn+1=Fn+Fn-1 我们会有: 则: 所以我们只需要想办法求矩阵A的幂,这时候我们当然想要用快速幂. 代码部分: 定义矩阵: struct matrix{ ll a[][]; }; (类比整数的快速幂)预处理: [我们需要一类似于1的矩阵:] 『1 0 0 0…
51 Nod 1242 斐波那契数列的第N项(矩阵快速幂模板题)
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 斐波那契数列的定义如下: F(0) = 0 F(1) = 1 F(n) = F(n - 1) + F(n - 2) (n >= 2) (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) 给出n,求F(n),由于结果很大,输出F(n) % 1000000009的结果即可. Input 输入1个数n(1 <…
Fib数列2 费马小定理+矩阵乘法
题解: 费马小定理 a^(p-1)=1(mod p) 这里推广到矩阵也是成立的 所以我们可以对(2^n)%(p-1) 然后矩阵乘法维护就好了 模数较大使用快速乘…
51Nod 1242 斐波那契数列的第N项(矩阵快速幂)
#include <iostream> #include <algorithm> using namespace std; typedef long long LL; ; ; struct Matrix { LL v[maxn][maxn]; }; //矩阵间的乘法 Matrix matrix_mul(Matrix A, Matrix B){ Matrix ans; ; i < maxn; i++){ ; j < maxn; j++){ ans.v[i][j] = ;…
快速计算类似斐波那契数列数列的数列的第N项,矩阵快速幂
这个题有循环节,可以不用这么做,这个可以当一个模板 #include <iostream> #include <cstdio> using namespace std; typedef long long ll; struct matrix{ int r,c;ll m[5][5]; }; matrix A,B,C,D; int n; void init(){ A.m[1][1]=3;A.m[1][2]=1; B.m[1][1]=1;B.m[1][2]=1; B.m[2][1]=-1…