项目 内容 课程班级博客链接 20级数据班(本) 作业链接 Python第四周作业第二次作业 博客名称 2003031121-浦娟-python数据分析第四周作业-matolotlib的应用 要求 每道题要有题目,代码(使用插入代码,不会插入代码的自己查资料解决,不要直接截图代码!!),截图(只截运行结果). 题目一:扩展阅读,撰写学习心得. 1.扩展阅读:matplotlib常用设置 阅读心得:知道了如何用matolotlib设置图像大小.设置刻度和标注.移动刻度标注(通过设置 set_hor…
项目 内容 课程班级博客链接 20级数据班(本) 这个作业要求链接 Python作业 博客名称 2003031121-浦娟-python数据分析五一假期作业 要求 每道题要有题目,代码(使用插入代码,不会插入代码的自己查资料解决,不要直接截图代码!!),截图(只截运行结果). 作业: 把期中考试代码看懂.运行并调通,要求每一行 或 每个重要功能写上注释. 一.分析1996~2015年人口数据特征间的关系 import numpy as np import matplotlib.pyplot as…
Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4节 透视表和交叉表 第5节 时间序列 第6节 日期的规范.频率以及移动 第7节 时区处理 第8节 时期及算术运算 第9节 重采样及频率转换 第10节 时间序列绘图 groupby 技术 一.实验简介 Python 数据分析(二)需要同学们先行学完 Python 数据分析(一)的课程. 对数据集进行分…
numpy库是python的一个著名的科学计算库,本文是一个quickstart. 引入:计算BMI BMI = 体重(kg)/身高(m)^2假如有如下几组体重和身高数据,让求每组数据的BMI值: weight = [65.4,59.2,63.6,88.4,68.7] height = [1.73,1.68,1.71,1.89,1.79] print weight / height ** 2 执行上面代码,报错:TypeError: unsupported operand type(s) for…
5.3 Python的科学计算包 - Numpy numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算.这个库的前身是1995年就开始开发的一个用于数组运算的库.经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深度学习框架. numpy在Linux下的安装已经在5.1.2中作为例子讲过,Windows下也可以通过pip,或者到下面网址下载: Obtaining NumPy & Sci…
由于图片内容太多,请拖动至新标签页再查看…
入门学习马上结束辽. 1.Pandas库 import pandas as pd 两个数据类型:Series,DataFrame Series类型:数据+索引 自定义索引 b = pd.Series([9,8,7,6],index=['a','b','c','d']) b Out[3]: a 9 b 8 c 7 d 6 dtype: int64 从标量值创建 s = pd.Series(25,index=['a','b','c'])#index=不能省略 s Out[7]: a 25 b 25…
单元4:Matplotlib库入门 matplotlib.pyplot是绘制各类可视化图形的命令子库,相当于快捷方式 import matplotlib.pyplot as plt # -*- coding: utf-8 -*- """ Created on Fri Aug 2 10:03:57 2019 @author: ASUS """ import matplotlib.pyplot as plt plt.plot([0,2,4,6,8],…
Numpy库 numpy:科学计算包,支持N维数组运算.处理大型矩阵.成熟的广播函数库.矢量运算.线性代数.傅里叶变换.随机数生成,并可与C++/Fortran语言无缝结合.树莓派Python v3默认安装已经包含了numpy. ①    导入模块 >>> import numpy as np ②    生成数组 >>> np.array([1, 2, 3, 4, 5])        # 把列表转换为数组 array([1, 2, 3, 4, 5]) >>…
学习Python的主要语法后,想利用python进行数据分析,感觉<Python数据分析与挖掘实战>可以用来学习参考,理论联系实际,能够操作数据进行验证,基础理论的内容对于新手而言还是挺有帮助的, 能从实际场景介入入手讲解,有前因后果的介绍,但是对于多个方法,为什么要采用其中某个执行方法没有细化. 共15章,分两个部分:基础篇.实战篇.基础篇介绍了数据挖掘的基本原理,实战篇介绍了一个个真实案例,通过对案例深入浅出的剖析,在不知不觉中通过案例实践获得数据挖掘项目经验,同时快速领悟看似难懂的数据挖…