22-5-13 seminar上和大家分享了这篇文章 [0]Graph few-shot learning via knowledge transfer 起因是在MLNLP的公众号上看到了张初旭老师讲的小样本图学习,虽然没看到录像,但是把ppt下下来研究了一下.所以本文中出现的图片许多都是张老师ppt中的图,在张老师的主页上能够找到的这份PPT. 前置知识 图与图表示学习 首先,老生常谈的,自然界中有许多的图数据和应用,包括社交的,安全的,医学的,化学的等等等等. 其中一种方法称为图表示学习,通…
发表于2013-01-18 11:35| 8827次阅读| 来源sina微博 条评论| 作者邓侃 数据分析智能算法机器学习大数据Google 摘要:文章来自邓侃的博客.数据革命迫在眉睫. 各大公司重兵集结.虎视眈眈.Google 兵分两路.左路以 Jeff Dean 和 Andrew Ng 为首.重点突破 Deep Learning 等等算法和应用,右路军由Amit Singhal领军,目标是构建Knowledge Graph基础设施.而在攻克技术难题之后.就是动用资本和商业的强力手段.跑马圈地…
领军大家: Geoffrey E. Hinton http://www.cs.toronto.edu/~hinton/ 阅读列表: reading lists and survey papers for deep learning http://deeplearning.net/reading-list/ 课程和教材: Deep Learning 教程(邓侃老师力荐,已有中文版面) http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tut…
Meta Learning/ Learning to Learn/ One Shot Learning/ Lifelong Learning 2018-08-03 19:16:56 本文转自:https://github.com/floodsung/Meta-Learning-Papers 1 Legacy Papers [1] Nicolas Schweighofer and Kenji Doya. Meta-learning in reinforcement learning. Neural…
Multi-attention Network for One Shot Learning 2018-05-15 22:35:50  本文的贡献点在于: 1. 表明类别标签信息对 one shot learning 可以提供帮助,并且设计一种方法来挖掘该信息: 2. 提出一种 attention network 来产生 attention maps  for creating the image representation of an exemplar image in novel class…
目录 摘要 一.引言 二.相关工作 三.我们的方法 3.1 边缘卷积Edge Convolution 3.2动态图更新 3.3 性质 3.4 与现有方法比较 四.评估 4.1 分类 4.2 模型复杂度 4.3 在ModelNet40上的更多实验 4.4 部件分割 4.5 室内场景分割 五.讨论 Dynamic Graph CNN for Learning on Point Clouds 论文地址:https://arxiv.org/abs/1801.07829 代码:https://github…
Paper Information 论文标题:Deep Graph Contrastive Representation Learning论文作者:Yanqiao Zhu, Yichen Xu, Feng Yu, Q. Liu, Shu Wu, Liang Wang论文来源:2020, ArXiv论文地址:download 代码地址:download Abstract 在本文中,作者提出了一个利用节点级对比目标的无监督图表示学习框架.具体来说,通过破坏原始图去生成两个视图,并通过最大化这两个视图…
论文信息 论文标题:Graph Communal Contrastive Learning论文作者:Bolian Li, Baoyu Jing, Hanghang Tong论文来源:2022, WWW论文地址:download 论文代码:download 1 Introduction 有相同兴趣的人往往通过他们的互动而紧密联系,而有不同兴趣的人则是松散的联系.因此,同一兴趣社区的人在图形上是相似的,将它们视为负对会给节点表示引入图形错误.为了解决这一问题,我们首先提出了一种基于图结构信息学习社区…
维基百科中对于Knowledge Transfer(知识转移)的定义是: 知识转移是指分享或传播知识并为解决问题提供投入.在组织理论中,知识转移是将知识从组织的一个部分转移到另一个部分的实践问题. 与知识管理一样,知识转移旨在组织,创建,捕获或分发知识,并确保其可供未来用户使用. 它不仅仅是一个沟通问题. 如果只是沟通,那么只通过备忘录,电子邮件或会议就可以实现. 知识转移更复杂,因为: 知识存在于组织成员,工具,任务及其子网中. 组织中的许多知识都是依赖于默契或难以表达的. 笔者也经历过一些相…
(缺少一些公式的图或者效果图,评论区有惊喜) (个人学习这篇论文时进行的翻译[谷歌翻译,你懂的],如有侵权等,请告知) StarCraft Micromanagement with Reinforcement Learning and Curriculum Transfer Learning 摘要 近年来,实时策略游戏一直是游戏人工智能的重要领域.本文提出了一个强化学习和课程转换学习方法来控制星际争霸微操作中的多个单位.我们定义了一个有效的状态表示,它可以打破游戏环境中大型状态空间造成的复杂性.…