ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton 摘要 我们训练了一个大型的深度卷积神经网络,来将在ImageNet LSVRC-2010大赛中的120万张高清图像分为1000个不同的类别.对测试数据,我们得到了top-1误差率37.5%,以及top-5误差率17.0%,这个效果比之前最顶尖的都要好得多.该神经网络有…
<ImageNet Classification with Deep Convolutional Neural Networks> 剖析 CNN 领域的经典之作, 作者训练了一个面向数量为 1.2 百万的高分辨率的图像数据集ImageNet, 图像的种类为1000 种的深度卷积神经网络.并在图像识别的benchmark数据集上取得了卓越的成绩. 和之间的LeNet还是有着异曲同工之妙.这里涉及到 category 种类多的因素,该网络考虑了多通道卷积操作, 卷积操作也不是 LeNet 的单通道…
0 - 摘要  我们训练了一个大型的.深度卷积神经网络用来将ImageNet LSVRC-2010竞赛中的120万高分辨率的图像分为1000个不同的类别.在测试集上,我们在top-1和top-5上的错误率分别为37.5%和17.0%,这比当前最好的技术好得多.这个拥有6000万参数和65万神经元的神经网络,由5个卷积层构成(其中有一些后接有池化层)和3个全连接层以及最后一个1000类别的softmax层.为了使得训练更加快速,我们使用非饱和神经元以及一个高效的GPU卷积操作实现.为了降低全连接层…
这篇论文提出了AlexNet,奠定了深度学习在CV领域中的地位. 1. ReLu激活函数 2. Dropout 3. 数据增强 网络的架构如图所示 包含八个学习层:五个卷积神经网络和三个全连接网络,并且使用了最大池化. RELU非线性层 传统的神经网络的输出包括$tanh$ 和 $ y = (1+e^{-x})^{-1}$,namely sigmoid. 在训练阶段的梯度下降的过程中, 饱和的非线性层比非饱和的非线性层下降得更慢. -- RELU 可以加快训练的速度,与饱和非线性函数相比达到相同…
这篇论文主要讲了CNN的很多技巧,参考这位博主的笔记:http://blog.csdn.net/whiteinblue/article/details/43202399 https://blog.acolyer.org/2016/04/20/imagenet-classification-with-deep-convolutional-neural-networks/…
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky University of Toronto 多伦多大学 kriz@cs.utoronto.ca Ilya Sutskever University of Toronto 多伦多大学 ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toront…
ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC-2010竞赛的120万高分辨率的图像分到1000不同的类别中.在测试数据上,我们得到了top-1 37.5%, top-5 17.0%的错误率,这个结果比目前的最好结果好很多.这个神经网络有6000万参数和650000个神经元,包含5个卷积层(某些卷积层后面带有池化层)和3个全连接层,最后是一个1…
ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 d…
这篇文章使用的AlexNet网络,在2012年的ImageNet(ILSVRC-2012)竞赛中获得第一名,top-5的测试误差为15.3%,相比于第二名26.2%的误差降低了不少. 本文的创新点: 1) 训练了(当时)最大的一个卷积神经网络,在ImageNet数据集上取得(当时)最好的结果: 2) 写了一个高度优化的GPU实现的2维卷积: 3) 包含了一些新的特点,来提高网络的泛化能力和减少网络的训练时间 4) 使用了一些有效的方法来减轻过拟合: 5) 网络使用了5层卷积层和3层全连接层,如果…
分类的数据大小:1.2million 张,包括1000个类别. 网络结构:60million个参数,650,000个神经元.网络由5层卷积层,其中由最大值池化层和三个1000输出的(与图片的类别数相同)全链接层组成. 选用非饱和神经元和高性能的GPU来增强卷积操作.为防止在全链接层发生过拟合,我们进行规则化 'dropout'操作,效果明显. 1.说明: 通过改变卷积神经网络的深度和宽度可以控制网络自身的容量.卷积网络可以更准确的预测图片的本质(图像统计上的不变性和像素级的局部性). 相比具有相…