Backpropagation Through Time (BPTT) 梯度消失与梯度爆炸 下面的图显示的是RNN的结果以及数据前向流动方向 假设有 \[ \begin{split} h_t &= \tanh W\begin{pmatrix}x_t \\ h_{t-1}\end{pmatrix}\\ y_t &= F(h_t)\\ C_t &= L(y_t, \hat{y}_t) \end{split} \] 那么在反向传播时,假设我们要求的是 \[ \begin{split} \…
1.RNN模型结构 循环神经网络RNN(Recurrent Neural Network)会记忆之前的信息,并利用之前的信息影响后面结点的输出.也就是说,循环神经网络的隐藏层之间的结点是有连接的,隐藏层的输入不仅包括输入层的输出,还包括上时刻隐藏层的输出.下图为RNN模型结构图: 2.RNN前向传播算法 RNN前向传播公式为: 其中: St为t时刻的隐含层状态值: Ot为t时刻的输出值: ①是隐含层计算公式,U是输入x的权重矩阵,St-1是t-1时刻的状态值,W是St-1作为输入的权重矩阵,$\…
梯度消失与梯度爆炸 当训练神经网络时,导数或坡度有时会变得非常大或非常小,甚至以指数方式变小,这加大了训练的难度 这里忽略了常数项b.为了让z不会过大或者过小,思路是让w与n有关,且n越大,w应该越小才好.这样能够保证z不会过大.一种方法是在初始化w时,令其方差为.相应的python伪代码为: 如果激活函数是tanh,一般选择下面的初始化方法 w[l] = np.random.randn(n[l],n[l-1])*np.sqrt(1/n[l-1]) 如果激活函数是ReLU,权重w的初始化一般令其…
梯度消失.梯度爆炸以及Kaggle房价预测 梯度消失和梯度爆炸 考虑到环境因素的其他问题 Kaggle房价预测 梯度消失和梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion). 当神经网络的层数较多时,模型的数值稳定性容易变差. 假设一个层数为\(L\)的多层感知机的第\(l\)层\(\boldsymbol{H}^{(l)}\)的权重参数为\(\boldsymbol{W}^{(l)}\),输出层\(\boldsymbol{H}^{(L)}\)的权重参…
梯度消失.梯度爆炸以及Kaggle房价预测 梯度消失和梯度爆炸 考虑到环境因素的其他问题 Kaggle房价预测 梯度消失和梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion). 当神经网络的层数较多时,模型的数值稳定性容易变差. 假设一个层数为LLL的多层感知机的第lll层H(l)\boldsymbol{H}^{(l)}H(l)的权重参数为W(l)\boldsymbol{W}^{(l)}W(l),输出层H(L)\boldsymbol{H}^{(L)}…
houseprices数据下载: 链接:https://pan.baidu.com/s/1-szkkAALzzJJmCLlJ1aXGQ 提取码:9n9k 梯度消失.梯度爆炸以及Kaggle房价预测 代码地址:下载 https://download.csdn.net/download/xiuyu1860/12156343 梯度消失和梯度爆炸 考虑到环境因素的其他问题 Kaggle房价预测 梯度消失和梯度爆炸 深度模型有关数值稳定性的典型问题是消失(vanishing)和爆炸(explosion).…
PS:要转载请注明出处,本人版权所有. PS: 这个只是基于<我自己>的理解, 如果和你的原则及想法相冲突,请谅解,勿喷. 前置说明   本文作为本人csdn blog的主站的备份.(BlogID=109) 环境说明 Windows 10 VSCode Python 3.8.10 Pytorch 1.8.1 Cuda 10.2 前言   如果有计算机背景的相关童鞋,都应该知道数值计算中的上溢和下溢的问题.关于计算机中的数值表示,在我的<数与计算机 (编码.原码.反码.补码.移码.IEEE…
网上有很多Simple RNN的BPTT(Backpropagation through time,随时间反向传播)算法推导.下面用自己的记号整理一下. 我之前有个习惯是用下标表示样本序号,这里不能再这样表示了,因为下标需要用做表示时刻. 典型的Simple RNN结构如下: 图片来源:[3] 约定一下记号: 输入序列 $\textbf x_{(1:T)} =(\textbf x_1,\textbf x_2,...,\textbf x_T)$ : 标记序列 $\textbf y_{(1:T)}…
觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.10 梯度消失和梯度爆炸 当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡度有时会变得非常大,或非常小,甚至以指数方式变小.这加大了训练的难度. 假设你正在训练一个很深的神经网络,并且将其权重命名为"W[1],W[2],W[3],W[4]......W[L]" 为了简化说明,我们选择激活函数为g(z)=z(线性激活函数),b[l]=0(即忽略偏置对神经网络的影响…
转自https://blog.csdn.net/guoyunfei20/article/details/78283043 神经网络中梯度不稳定的根本原因:在于前层上的梯度的计算来自于后层上梯度的乘积(链式法则).当层数很多时,就容易出现不稳定.下边3个隐含层为例: 其b1的梯度为: 加入激活函数为sigmoid,则其导数如下图: sigmoid导数σ'的最大值为1/4.同常一个权值w的取值范围为abs(w) < 1,则:|wjσ'(zj)| < 1/4,从而有: 从上式可以得出结论:前层比后层…