KNN(K Nearest Neighbor) 还是先记几个关键公式 距离:一般用Euclidean distance   E(x,y)√∑(xi-yi)2 .名字这么高大上,就是初中学的两点间的距离嘛. 还有其他距离的衡量公式,余弦值(cos),相关度(correlation) 曼哈顿距离(manhatann distance).我觉得针对于KNN算法还是Euclidean distance最好,最直观. 然后就选择最近的K个点.根据投票原则分类出结果. 首先利用sklearn自带的的iris…
关键词: 输入层(Input layer).隐藏层(Hidden layer).输出层(Output layer) 理论上如果有足够多的隐藏层和足够大的训练集,神经网络可以模拟出任何方程.隐藏层多的时候就是深度学习啦 没有明确的规则来设计最好有多少个隐藏层,可以根据实验测试的误差以及准确度来实验测试并改进. 交叉验证方法(cross -validation):把样本分为K份,取一份为测试集,其他为训练集.共取K次,然后取其平均值 BP的步骤 1.初始化权重(weight)以及偏向(bias),随…
SVM分类器里面的东西好多呀,碾压前两个.怪不得称之为深度学习出现之前表现最好的算法. 今天学到的也应该只是冰山一角,懂了SVM的一些原理.还得继续深入学习理解呢. 一些关键词: 超平面(hyper plane)SVM的目标就是找到一个超平面把两类数据分开.使边际(margin)最大.如果把超平面定义为w*x+b=0.那么超平面距离任意一个支持向量的距离就是1/||w||.(||w||是w的范数,也就是√w*w’) SVM就是解决 这个优化问题.再经过拉格朗日公式和KKT条件等数学运算求解得到一…
一些概念 相关系数:衡量两组数据相关性 决定系数:(R2值)大概意思就是这个回归方程能解释百分之多少的真实值. Kmeans聚类大致就是选择K个中心点.不断遍历更新中心点的位置.离哪个中心点近就属于哪一类.中心点的更新取此类的平均点. 优点:速度快,原理简单 缺点:最终结果与初始点选择有段,容易陷入局部最优.并且还要提前知道K值 代码 import numpy as np def kmeans(X,k,maxIt): numPoints,numDim= X.shape dataSet=np.ze…
译者按: 机器学习原来很简单啊,不妨动手试试! 原文: Machine Learning with JavaScript : Part 2 译者: Fundebug 为了保证可读性,本文采用意译而非直译.另外,本文版权归原作者所有,翻译仅用于学习.另外,我们修正了原文代码中的错误 上图使用plot.ly所画. 上次我们用JavaScript实现了线性规划,这次我们来聊聊KNN算法. KNN是k-Nearest-Neighbours的缩写,它是一种监督学习算法.KNN算法可以用来做分类,也可以用来…
1 KNN算法 1.1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系.输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较,提取出样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k近邻算法中k的出处,通常k是不大于20的整数.最后选择k个最相似数据中出现次数最多的分类作为新数据…
一.kNN算法基础 # kNN:k-Nearest Neighboors # 多用于解决分裂问题 1)特点: 是机器学习中唯一一个不需要训练过程的算法,可以别认为是没有模型的算法,也可以认为训练数据集就是模型本身: 思想极度简单: 应用数学知识少(近乎为零): 效果少: 可以解释机械学习算法使用过程中的很多细节问题 更完整的刻画机械学习应用的流程: 2)思想: 根本思想:两个样本,如果它们的特征足够相似,它们就有更高的概率属于同一个类别: 问题:根据现有训练数据集,判断新的样本属于哪种类型: 方…
本文申明:本系列的所有实验数据都是来自[美]Peter Harrington 写的<Machine Learning in Action>这本书,侵删. 一案例导入:玛利亚小姐最近寂寞了,然后她就准备在一个在线社交网站搞网恋,但是凡是都有一个选择,按照她以往的经验,她接触了三种人: 1:不喜欢的人 2:魅力一般的人 3:特别有魅力的人 但是啊,尽管发现了这三类人,但是她还是无法甄别她究竟喜欢哪种人.所以她就求助我们,如果给她当这个月老.---------那我们就把这个实践叫做月老实践吧. 二案…
前言 Hello ,everyone. 我是小花.大四毕业,留在学校有点事情,就在这里和大家吹吹我们的狐朋狗友算法---KNN算法,为什么叫狐朋狗友算法呢,在这里我先卖个关子,且听我慢慢道来. 一 KNN算法简介 KNN(k-nearest neighbor的缩写)又叫最近邻算法.是1968年由Cover和Hart提出的一种用于分类和回归的无母数统计方法.什么叫无母统计方法呢,这里作个补充:无母统计方法又称非参数统计学,是统计学的一个分支,适用于母群体情况未明,小样本,母群体分布不为常态也不易转…
knn算法不需要进行训练, 耗时,适用于多标签分类情况 1. 将输入的单个测试数据与每一个训练数据依据特征做一个欧式距离. 2. 将求得的欧式距离进行降序排序,取前n_个 3. 计算这前n_个的y值的平均或者(类别),获得测试数据的预测值 4.根据测试数据的实际值和测试数据的预测值计算当前的rmse,判断该方法的好坏 使用AIRbob的房子的特征与房价做演示: 演示1.首先使用accommodates属性对一个数据做演示,采用的距离是绝对值距离 import pandas as pd impor…
k近邻(k-Nearest Neighbor,简称kNN)学习是一种常用的监督学习方法,其工作机制非常简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k个训练样本.然后基于这k个“邻居”的信息进行预测.通常在分类任务中可使用“投票法”,即选择这k个样本中出现最多的类别标记作为预测结果:在回归任务中可使用“平均法”,即将这k个样本中的实值输出标记的平均值作为预测结果:还可基于距离远近进行加权平均或加权投票,距离越近的样本权重越大.kNN没有一个显示的训练过程. 如下图所示,判断测试样本…
KNN算法是解决分类问题的最简单的算法.同时也是最常用的算法.KNN算法也可以称作k近邻算法,是指K个最近的数据集,属于监督学习算法. 开发流程: 1.加载数据,加载成特征矩阵X与目标向量Y. 2.给定一个新的数据,算出新数据和所有数据的距离,找到距离最近的前K个数据,K的取值范围一般是3-15个.凭经验. 3.统计前K个距离最近的样本对应的类别,然后少数服从多数,将这个数据划分为出现次数最多的那个类别. 注:这里面的距离指的是欧式距离 优缺点: 简单 支持多分类 K的取值会影响结果 噪声数据敏…
前面一个博客我们用Scikit-Learn实现了中文文本分类的全过程,这篇博客,着重分析项目最核心的部分分类算法:朴素贝叶斯算法以及KNN算法的基本原理和简单python实现. 3.1 贝叶斯公式的推导 简单介绍一下什么是贝叶斯: 让我们从一个故事开始. 1 看着后视镜往前开车 想象这么一个场景,我开着车,经过笔直的大道,快速地往下一个路口驶去.我知道,到了下一个路口就要右转了. 这件事情很简单,我坐在驾驶室内,看到下一个路口,往右边打方向盘就好了: 突然,不管什么原因(这故事是我写的,可以安排…
一.算法 1.kNN算法又称为k近邻分类(k-nearest neighbor classification)算法. 最简单平庸的分类器或许是那种死记硬背式的分类器,记住全部的训练数据.对于新的数据则直接和训练数据匹配,假设存在同样属性的训练数据,则直接用它的分类来作为新数据的分类.这样的方式有一个明显的缺点,那就是非常可能无法找到全然匹配的训练记录. kNN算法则是从训练集中找到和新数据最接近的k条记录.然后依据他们的主要分类来决定新数据的类别.该算法涉及3个主要因素:训练集.距离或相似的衡量…
# # kNN 分类算法 a = np.array([[1,1],[1.2,1.5],[0.3,0.4],[0.2,0.5]]) #构造样本数据 labels = ['A','A','B','B'] # print(a.shape[0]) # 行数 shape(1)表示列数 diffMat = np.tile (np.array([[1.5,1.2]]),(a.shape[0],1)) - a #tile(被重复数据,(重复几行,每行重复几次)) # diffMat # [[ 0.5 0.2]…
最近开始学习机器学习,以下会记录我学习中遇到的问题以及我个人的理解 决策树算法,网上很多介绍,在这不复制粘贴.下面解释几个关键词就好. 信息熵(entropy):就是信息不确定性的多少 H(x)=-ΣP(x)log2[P(x)].变量的不确定性越大,熵就越大. 信息获取量(Information Gain):这是ID3算法中定义的一个选择属性判断结点的算法.Gain(A)=H(D)-HA(D).就是本的信息熵与下一级的信息熵之差.用来确定信息获取量的多少,信息获取量最多的即选择为本级的判断属性.…
从一个例子来直观感受KNN思想 如下图 , 绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类.         从这个例子中,我们再来看KNN思想: , 计算已知类别数据集合中的点与当前点之间的距离(使用欧式距离公司: d =sqrt(pow(x-x1),)+pow(y-y1),) , 按照距离递增次序排序(由近到远) , 选取与当前点距离最小的的…
1. 综述      1.1 Cover和Hart在1968年提出了最初的邻近算法      1.2 分类(classification)算法      1.3 输入基于实例的学习(instance-based learning), 懒惰学习(lazy learning)     3. 算法详述        3.1 步骤:      为了判断未知实例的类别,以所有已知类别的实例作为参照      选择参数K      计算未知实例与所有已知实例的距离      选择最近K个已知实例      …
这个算法.我个人感觉有点鸡肋.最终的表达也不是特别清楚. 原理很简单,从所有的样本中选取Euclidean distance最近的两个样本,归为一类,取其平均值组成一个新样本,总样本数少1:不断的重复,最终样本数为1.这样的话就形成了一个树,每个节点要不有两个子节点,要不没有子节点. 这个算法也大概能分出来类,但是实用性我觉得不是很强. 源代码 from numpy import * class cluster_node: def __init__(self,vec,left=None,righ…
关键词: 梯度下降:就是让数据顺着梯度最大的方向,也就是函数导数最大的放下下降,使其快速的接近结果. Cost函数等公式太长,不在这打了.网上多得是. 这个非线性回归说白了就是缩小版的神经网络. python实现: import numpy as np import random def graientDescent(x,y,theta,alpha,m,numIterations):#梯度下降算法 xTrain =x.transpose() for i in range(0,numIterati…
这一节很简单,都是高中讲过的东西 简单线性回归:y=b0+b1x+ε.b1=(Σ(xi-x–)(yi-y–))/Σ(xi-x–)ˆ2       b0=y--b1x-    其中ε取 为均值为0的正态分布 多元线性回归差不多 我自己写了程序,练习一下面向对象编程 import numpy as np class SimpleLinearRegression: def __init__(self): self.b0=0 self.b1=0 def fit(self,X,Y): n=len(X) d…
新手,有问题的地方请大家指教 训练集的数据有属性和标签 同类即同标签的数据在属性值方面一定具有某种相似的地方,用距离来描述这种相似的程度 k=1或则较小值的话,分类对于特殊数据或者是噪点就会异常敏感,容易将测试的数据分成和特殊数据一类或者分成和错误数据一类 k值很大的话,对于在训练集中占比很大的数据对这个未知数据的分类贡献会比一般数据大,存在以全概篇,容易分错 <机器学习实战>书上说的是K值是不大于20的书,我也听老师说K要取奇数,我想的话,是防止两个类别在位置数据的邻域内的占比相等,无法正确…
秒懂机器学习---k临近算法(KNN) 一.总结 一句话总结: 弄懂原理,然后要运行实例,然后多解决问题,然后想出优化,分析优缺点,才算真的懂 1.KNN(K-Nearest Neighbor)算法的工作原理是什么? 取特征最相似数据分类标签:输入没有标签的新数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较,提取出样本集中特征最相似数据(最近邻)的分类标签 存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系.输入没有…
机器学习实战之kNN算法   机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组和矩阵,提供了大量的矩阵处理函数,使运算更加容易,执行更加迅速. (3)matplotlib 1.5.3,64位,在下载该工具时,一定要对应好python的版本,处理器版本,matplo…
机器学习十大算法之KNN算法 前段时间一直在搞tkinter,机器学习荒废了一阵子.如今想重新写一个,发现遇到不少问题,不过最终还是解决了.希望与大家共同进步. 闲话少说,进入正题. KNN算法也称最近邻居算法,是一种分类算法. 算法的基本思想:假设已存在一个数据集,数据集有多个数值属性和一个标签属性,输入一个新数据,求新数据的标签. 步骤如下: 先将新数据拷贝n份,形成一个新的数据集: 逐行计算新数据集与原数据集的距离: 按距离长度排序后,统计前K个数据里,那个标签出现的次数最多,新数据就标记…
改章节笔者在深圳喝咖啡的时候突然想到的...之前就有想写几篇关于算法代码的文章,所以回家到以后就奋笔疾书的写出来发表了 前一段时间介绍了Kmeans聚类,而KNN这个算法刚好是聚类以后经常使用的匹配技巧.我们都知道python中有Numby和Scipy这两个库,还有前段时间写的matplot库,绘图用的,大家可以参考下,实际这个算法是看懂之前的一些算法的实现. 上面我就简单介绍下这个算法实现,首先我们先肯定一个事前准备好的矩阵,这个多是事前聚类出来的或者通过专家估计出来的值. 为了这个分类矩阵和…
机器学习十大算法 之 kNN(一) 最近在学习机器学习领域的十大经典算法,先从kNN开始吧. 简介 kNN是一种有监督学习方法,它的思想很简单,对于一个未分类的样本来说,通过距离它最近的k个"邻居",来判断这个样本的类别.kNN也是一种lazy learning(不知道中文是啥)技术,训练代价小.分类代价大.算法的要点有四个: 训练集 k的取值 距离的衡量方式 决定未知样本类别的方式 尽管kNN理解和实现起来都很简单,但是在某些应用上仍然有较好的表现.Cover和Hart指出,在一些合…
一.概述 K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关.由于KNN方法主要靠周…
本文主要是用kNN算法对字母图片进行特征提取,分类识别.内容如下: kNN算法及相关Python模块介绍 对字母图片进行特征提取 kNN算法实现 kNN算法分析 一.kNN算法介绍 K近邻(kNN,k-NearestNeighbor)分类算法是机器学习算法中最简单的方法之一.所谓K近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.我们将样本分为训练样本和测试样本.对一个测试样本 t  进行分类,kNN的做法是先计算样本 t  到所有训练样本的欧氏距离,然后从中找出k…
现在 机器学习 这么火,小编也忍不住想学习一把.注意,小编是零基础哦. 所以,第一步,推荐买一本机器学习的书,我选的是Peter harrigton 的<机器学习实战>.这本书是基于python 2.7的,但是我安装的是python 3.6.2. 所以很关键的是,你必须得有一定的python基础.这里我推荐runoob的py3教程,通俗易懂.http://www.runoob.com/python3/python3-tutorial.html 注意:python2和python3是不兼容的 p…